
Statistics
Module 11

Andrew Jaffe
June 18, 2015

Statistics

Now we are going to cover how to perform a variety of basic statistical tests in R.

• Correlation
• T-tests
• Linear Regression
• Logistic Regression
• Proportion tests
• Chi-squared
• Fisher’s Exact Test

Note: We will be glossing over the statistical theory and “formulas” for these tests. There are plenty of
resources online for learning more about these tests, as well as dedicated Biostatistics series at the School of
Public Health

Correlation

cor() performs correlation in R

cor(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))

Like other functions, if there are NAs, you get NA as the result. But if you specify use only the complete
observations, then it will give you correlation on the non-missing data.

> load("../data/charmcirc.rda")
> cor(circ2$orangeAverage, circ2$purpleAverage)

[1] NA

> cor(circ2$orangeAverage, circ2$purpleAverage, use="complete.obs")

[1] 0.9195356

Correlation

You can also get the correlation between matrix columns

1

> signif(cor(circ2[,grep("Average",names(circ2))], use="complete.obs"),3)

orangeAverage purpleAverage greenAverage bannerAverage
orangeAverage 1.000 0.908 0.840 0.545
purpleAverage 0.908 1.000 0.867 0.521
greenAverage 0.840 0.867 1.000 0.453
bannerAverage 0.545 0.521 0.453 1.000

Or between columns of two matrices, column by column.

> signif(cor(circ2[,3:4],circ2[,5:6], use="complete.obs"),3)

greenAverage bannerAverage
orangeAverage 0.840 0.545
purpleAverage 0.867 0.521

Correlation

You can also use cor.test() to test for whether correlation is significant (ie non-zero). Note that linear
regression may be better, especially if you want to regress out other confounders.

> ct= cor.test(circ2$orangeAverage,
+ circ2$purpleAverage, use="complete.obs")
> ct

Pearson's product-moment correlation

data: circ2$orangeAverage and circ2$purpleAverage
t = 73.656, df = 991, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9093438 0.9286245

sample estimates:
cor

0.9195356

Correlation

Note that you can add the correlation to a plot, via the legend() function.

> plot(circ2$orangeAverage, circ2$purpleAverage,
+ xlab="Orange Line", ylab="Purple Line",
+ main="Average Ridership",cex.axis=1.5,
+ cex.lab=1.5,cex.main=2)
> legend("topleft", paste("r =", signif(ct$estimate,3)), bty="n",cex=1.5)

2

0 2000 5000

0
40

00
80

00
Average Ridership

Orange Line

P
ur

pl
e

Li
ne

r = 0.92

Correlation

For many of these testing result objects, you can extract specific slots/results as numbers, as the ct object is
just a list.

> # str(ct)
> names(ct)

[1] "statistic" "parameter" "p.value" "estimate" "null.value"
[6] "alternative" "method" "data.name" "conf.int"

> ct$statistic

t
73.65553

> ct$p.value

[1] 0

T-tests

The T-test is performed using the t.test() function, which essentially tests for the difference in means of a
variable between two groups.

In this syntax, x and y are the column of data for each group.

3

> tt = t.test(circ2$orangeAverage, circ2$purpleAverage)
> tt

Welch Two Sample t-test

data: circ2$orangeAverage and circ2$purpleAverage
t = -17.076, df = 1984, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1096.7602 -870.7867

sample estimates:
mean of x mean of y
3033.161 4016.935

T-tests

t.test saves a lot of information: the difference in means estimate, confidence interval for the difference
conf.int, the p-value p.value, etc.

> names(tt)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "alternative" "method" "data.name"

T-tests

You can also use the ‘formula’ notation. In this syntax, it is y ~ x, where x is a factor with 2 levels or a
binary variable and y is a vector of the same length.

> cars = read.csv("../data/kaggleCarAuction.csv",as.is=TRUE)
> tt2 = t.test(VehBCost~IsBadBuy, data=cars)
> tt2$estimate

mean in group 0 mean in group 1
6797.077 6259.274

T-tests

You can add the t-statistic and p-value to a boxplot.

> boxplot(VehBCost~IsBadBuy, data=cars,
+ xlab="Bad Buy",ylab="Value")
> leg = paste("t=", signif(tt$statistic,3),
+ " (p=",signif(tt$p.value,3),")",sep="")
> legend("topleft", leg, cex=1.2, bty="n")

4

0 1

0
10

00
0

30
00

0

Bad Buy

V
al

ue

t=−17.1 (p=4.2e−61)

Linear Regression

Now we will briefly cover linear regression. I will use a little notation here so some of the commands are
easier to put in the proper context.

yi = α+ βxi + εi

where:

• yi is the outcome for person i
• α is the intercept
• β is the slope
• xi is the predictor for person i
• εi is the residual variation for person i

Linear Regression

The R version of the regression model is:

y ~ x

where:

• y is your outcome
• x is/are your predictor(s)

5

Linear Regression

For a linear regression, when the predictor is binary this is the same as a t-test:

> fit = lm(VehBCost~IsBadBuy, data=cars)
> fit

Call:
lm(formula = VehBCost ~ IsBadBuy, data = cars)

Coefficients:
(Intercept) IsBadBuy

6797.1 -537.8

‘(Intercept)’ is α

‘IsBadBuy’ is β

Linear Regression

The summary command gets all the additional information (p-values, t-statistics, r-square) that you usually
want from a regression.

> sfit = summary(fit)
> print(sfit)

Call:
lm(formula = VehBCost ~ IsBadBuy, data = cars)

Residuals:
Min 1Q Median 3Q Max

-6258 -1297 -27 1153 39210

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6797.077 6.953 977.61 <2e-16 ***
IsBadBuy -537.803 19.826 -27.13 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1759 on 72981 degrees of freedom
Multiple R-squared: 0.009982, Adjusted R-squared: 0.009969
F-statistic: 735.9 on 1 and 72981 DF, p-value: < 2.2e-16

Linear Regression

The coefficients from a summary are the coefficients, standard errors, t-statistcs, and p-values for all the
estimates.

6

> names(sfit)

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

> sfit$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6797.0774 6.952728 977.61299 0.00000e+00
IsBadBuy -537.8033 19.825525 -27.12681 3.01661e-161

Linear Regression

We’ll look at vehicle odometer value by vehicle age:

fit = lm(VehOdo~VehicleAge, data=cars)
print(fit)

##
Call:
lm(formula = VehOdo ~ VehicleAge, data = cars)
##
Coefficients:
(Intercept) VehicleAge
60127 2723

Linear Regression

We can visualize the vehicle age/odometer relationshp using scatter plots or box plots (with regression lines).
The function abline will plot the regresion line on the plot.

> library(scales) # we need this for the alpha command - make points transparent
> par(mfrow=c(1,2))
> plot(VehOdo ~ jitter(VehicleAge,amount=0.2), data=cars, pch = 19,
+ col = alpha("black",0.05), xlab="Vehicle Age (Yrs)")
> abline(fit, col="red",lwd=2)
> legend("topleft", paste("p =",summary(fit)$coef[2,4]))
> boxplot(VehOdo ~ VehicleAge, data=cars, varwidth=TRUE)
> abline(fit, col="red",lwd=2)

7

0 2 4 6 8

20
00

0
60

00
0

10
00

00

Vehicle Age (Yrs)

V
eh

O
do

p = 0

0 1 2 3 4 5 6 7 8 9

20
00

0
60

00
0

10
00

00
Linear Regression

Note that you can have more than 1 predictor in regression models.The interpretation for each slope is change
in the predictor corresponding to a one-unit change in the outcome, holding all other predictors constant.

> fit2 = lm(VehOdo ~ IsBadBuy + VehicleAge, data=cars)
> summary(fit2)

Call:
lm(formula = VehOdo ~ IsBadBuy + VehicleAge, data = cars)

Residuals:
Min 1Q Median 3Q Max

-70856 -9490 1390 10311 41193

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 60141.77 134.75 446.33 <2e-16 ***
IsBadBuy 1329.00 157.84 8.42 <2e-16 ***
VehicleAge 2680.33 30.27 88.53 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13810 on 72980 degrees of freedom
Multiple R-squared: 0.1031, Adjusted R-squared: 0.1031
F-statistic: 4196 on 2 and 72980 DF, p-value: < 2.2e-16

Linear Regression

Added-Variable plots can show you the relationship between a variable and outcome after adjusting for other
variables. The function avPlots from the car package can do this:

8

> library(car)
> avPlots(fit2)

−0.2 0.2 0.4 0.6 0.8 1.0

−
60

00
0

−
20

00
0

20
00

0

IsBadBuy | others

V
eh

O
do

 |
 o

th
er

s

−4 −2 0 2 4

−
60

00
0

−
20

00
0

20
00

0
VehicleAge | others

V
eh

O
do

 |
 o

th
er

s

Added−Variable Plots

Linear Regression

Plot on an lm object will do diagnostic plots. Residuals vs. Fitted should have no discernable shape (the red
line is the smoother), the qqplot shows how well the residuals fit a normal distribution, and Cook’s distance
measures the influence of individual points.

> par(mfrow=c(2,2))
> plot(fit2, ask= FALSE)

9

60000 65000 70000 75000 80000 85000

−
80

00
0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

16181 3092632959

−4 −2 0 2 4

−
4

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

161813092632959

60000 65000 70000 75000 80000 85000

0.
0

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
16181 3092632959

0.00000 0.00005 0.00010 0.00015

−
6

0

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

96504171430926

Linear Regression

Factors get special treatment in regression models - lowest level of the factor is the comparison group, and all
other factors are relative to its values.

> fit3 = lm(VehOdo ~ factor(TopThreeAmericanName), data=cars)
> summary(fit3)

Call:
lm(formula = VehOdo ~ factor(TopThreeAmericanName), data = cars)

Residuals:
Min 1Q Median 3Q Max

-71947 -9634 1532 10472 45936

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 68248.48 92.98 733.984 < 2e-16 ***
factor(TopThreeAmericanName)FORD 8523.49 158.35 53.828 < 2e-16 ***
factor(TopThreeAmericanName)GM 4952.18 128.99 38.393 < 2e-16 ***
factor(TopThreeAmericanName)NULL -2004.68 6361.60 -0.315 0.752670
factor(TopThreeAmericanName)OTHER 584.87 159.92 3.657 0.000255 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14220 on 72978 degrees of freedom
Multiple R-squared: 0.04822, Adjusted R-squared: 0.04817
F-statistic: 924.3 on 4 and 72978 DF, p-value: < 2.2e-16

10

Logistic Regression and GLMs

Generalized Linear Models (GLMs) allow for fitting regressions for non-continous/normal outcomes. The glm
has similar syntax to the lm command. Logistic regression is one example.

> glmfit = glm(IsBadBuy ~ VehOdo + VehicleAge, data=cars, family=binomial())
> summary(glmfit)

Call:
glm(formula = IsBadBuy ~ VehOdo + VehicleAge, family = binomial(),

data = cars)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9943 -0.5481 -0.4534 -0.3783 2.6318

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.778e+00 6.381e-02 -59.211 <2e-16 ***
VehOdo 8.341e-06 8.526e-07 9.783 <2e-16 ***
VehicleAge 2.681e-01 6.772e-03 39.589 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54421 on 72982 degrees of freedom
Residual deviance: 52346 on 72980 degrees of freedom
AIC: 52352

Number of Fisher Scoring iterations: 5

Logistic Regression

Note the coefficients are on the original scale, we must exponentiate them for odds ratios:

> exp(coef(glmfit))

(Intercept) VehOdo VehicleAge
0.02286316 1.00000834 1.30748911

Proportion tests

prop.test() can be used for testing the null that the proportions (probabilities of success) in several groups
are the same, or that they equal certain given values.

prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

11

> prop.test(x=15, n =32)

1-sample proportions test with continuity correction

data: 15 out of 32, null probability 0.5
X-squared = 0.03125, df = 1, p-value = 0.8597
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.2951014 0.6496695

sample estimates:
p

0.46875

Chi-squared tests

chisq.test() performs chi-squared contingency table tests and goodness-of-fit tests.

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

> tab = table(cars$IsBadBuy, cars$IsOnlineSale)
> tab

0 1
0 62375 1632
1 8763 213

Chi-squared tests

You can also pass in a table object (such as tab here)

> cq=chisq.test(tab)
> cq

Pearson's Chi-squared test with Yates' continuity correction

data: tab
X-squared = 0.92735, df = 1, p-value = 0.3356

> names(cq)

[1] "statistic" "parameter" "p.value" "method" "data.name" "observed"
[7] "expected" "residuals" "stdres"

12

> cq$p.value

[1] 0.3355516

Chi-squared tests

Note that does the same test as prop.test, for a 2x2 table.

> chisq.test(tab)

Pearson's Chi-squared test with Yates' continuity correction

data: tab
X-squared = 0.92735, df = 1, p-value = 0.3356

> prop.test(tab)

2-sample test for equality of proportions with continuity
correction

data: tab
X-squared = 0.92735, df = 1, p-value = 0.3356
alternative hypothesis: two.sided
95 percent confidence interval:
-0.005208049 0.001673519

sample estimates:
prop 1 prop 2

0.9745028 0.9762701

Fisher’s Exact test

fisher.test() performs contingency table test using the hypogeometric distribution (used for small sample
sizes).

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)

> fisher.test(tab)

Fisher's Exact Test for Count Data

data: tab
p-value = 0.3324
alternative hypothesis: true odds ratio is not equal to 1

13

95 percent confidence interval:
0.8001727 1.0742114

sample estimates:
odds ratio
0.9289923

Probability Distributions

Sometimes you want to generate data from a distribution (such as normal), or want to see where a value falls
in a known distribution. R has these distibutions built in:

• Normal
• Binomial
• Beta
• Exponential
• Gamma
• Hypergeometric
• etc

Probability Distributions

Each has 4 options:

• r for random number generation [e.g. rnorm()]
• d for density [e.g. dnorm()]
• p for probability [e.g. pnorm()]
• q for quantile [e.g. qnorm()]

> rnorm(5)

[1] 0.2138222 0.4995846 0.8617045 -1.2882207 1.5599225

Sampling

The sample() function is pretty useful for permutations

> sample(1:10, 5, replace=FALSE)

[1] 6 2 4 3 8

Also, if you want to only plot a subset of the data (for speed/time or overplotting)

> samp.cars <- cars[sample(nrow(cars), 10000),]
> plot(VehOdo ~ jitter(VehBCost,amount=0.3), data= samp.cars)

14

0 5000 10000 15000

2e
+

04
6e

+
04

1e
+

05

jitter(VehBCost, amount = 0.3)

V
eh

O
do

15

	Statistics
	Correlation
	Correlation
	Correlation
	Correlation
	Correlation
	T-tests
	T-tests
	T-tests
	T-tests
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression
	Logistic Regression and GLMs
	Logistic Regression
	Proportion tests
	Chi-squared tests
	Chi-squared tests
	Chi-squared tests
	Fisher's Exact test
	Probability Distributions
	Probability Distributions
	Sampling

