
Data I/O + Subset
Module 5

Andrew Jaffe
June 16, 2015

Data Output

While its nice to be able to read in a variety of data formats, it’s equally important to be able to output data
somewhere.

write.table(): prints its required argument x (after converting it to a data.frame if it is not one nor a
matrix) to a file or connection.

write.table(x,file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"),
fileEncoding = "")

Data Output

x: the R data.frame or matrix you want to write

file: the file name where you want to R object written. It can be an absolute path, or a filename (which
writes the file to your working directory)

sep: what character separates the columns?

• “,” = .csv - Note there is also a write.csv() function
• “�’’ = tab delimited

row.names: I like setting this to FALSE because I email these to collaborators who open them in Excel

Data Output

For example, from the Homework 2 Dataset:

circ = read.csv("../data/Charm_City_Circulator_Ridership.csv", header=TRUE,as.is=TRUE)
circ2 = circ[,c("day","date", "orangeAverage","purpleAverage","greenAverage",

"bannerAverage","daily")]
write.csv(circ2, file="../data/charmcitycirc_reduced.csv", row.names=FALSE)

Note that row.names=TRUE would make the first column contain the row names, here just the numbers
1:nrow(circ2), which is not very useful for Excel. Note that row names can be useful/informative in R if
they contain information (but then they would just be a separate column).

1

Data Input - Excel

Many data analysts collaborate with researchers who use Excel to enter and curate their data. Often times,
this is the input data for an analysis. You therefore have two options for getting this data into R:

• Saving the Excel sheet as a .csv file, and using read.csv()
• Using an add-on package called xlsx

For single worksheet .xlsx files, I often just save the spreadsheet as a .csv file (because I often have to strip
off additional summary data from the columns)
For an .xlsx file with multiple well-formated worksheets, I use the xlsx package for reading in the data.

More on Packages

Packages are add-ons that are commonly written by users comprised of functions, data, and vignettes

• Use library() or require() to load the package into memory so you can use its functions
• Install packages using install.packages("PackageName")
• Use help(package="PackageName") to see what contents the package has
• http://cran.r-project.org/web/packages/available_packages_by_name.html

More on Packages

Some useful data input/output packages

• foreign package - read data from Stata/SPSS/SAS
• sas7bdat - read SAS data
• xlsx - reads in XLS files

Installing Packages

install.packages("xlsx") # OR:
install.packages("xlsx",

repos="http://cran.us.r-project.org")
library(xlsx) # or require(xlsx)

Note you will need a stand-alone version of Java to use this

Saving R Data

It’s very useful to be able to save collections of R objects for future analyses.
For example, if a task takes several hours(/days) to run, it might be nice to run it once and save the results
for downstream analyses.
save(...,file="[name].rda")

where ... is as many R objects, referenced by unquoted variable names, as you want to save.
For example, from the homework:

2

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html

save(circ,circ2,file="../data/charmcirc.rda")

Saving R Data

You also probably have noticed the prompt when you close R about saving your workspace. The workspace is
the collection of R objects and custom R functions in your current environment. You can check the workspace
with ls() or view it in the “Workspace” tab:

ls()

[1] "circ" "circ2" "file" "Index" "tmp" "x"

Saving R Data

Saving the workspace will save all of these files in your current working directory as a hidden file called
“.Rdata”. The function save.image() also saves the entire workspace, but you can give your desired file name
as an input (which is nicer because the file is not hidden).

Note that R Studio should be able to open any .rda or .Rdata file. Opening one of these file types from
Windows Explorer or OSX’s Finder loads all of the objects into your workspace and changes your working
directory to wherever the file was located.

Loading R Data

You can easily load any ‘.rda’ or ‘.Rdata’ file with the load() function:

tmp=load("../data/charmcirc.rda")
tmp

[1] "circ" "circ2"

ls()

[1] "circ" "circ2" "file" "Index" "tmp" "x"

Note that this saves the R object names as character strings in an object called ‘tmp’, which is nice if you
already have a lot of items in your working directory, and/or you don’t know exactly which got loaded in

Removing R Data

You can easily remove any R object(s) using the rm() or remove() functions, and they are no longer in your
R environment (which you can confirm with running ls())

You can also remove all of the objects you have added to your workplace with:

> rm(list = ls())

3

Subsetting Data

Often you only want to look at subsets of a data set at any given time. As a review, elements of an R object
are selected using the brackets.

Today we are going to look at more flexible ways of identifying which rows of a dataset to select.

Subsetting Data

You can put a - before integers inside brackets to remove these indices from the data.

x = c(1,3,77,54,23,7,76,5)
x[1:3] # first 3

[1] 1 3 77

x[-2] # all but the second

[1] 1 77 54 23 7 76 5

Subsetting Data

Note that you have to be careful with this syntax when dropping more than 1 element:

x[-c(1,2,3)] # drop first 3

[1] 54 23 7 76 5

x[-1:3] # shorthand. R sees as -1 to 3
x[-(1:3)] # needs parentheses

[1] 54 23 7 76 5

Selecting on multiple queries

What about selecting rows based on the values of two variables? We can ‘chain’ together logical statements
using the following:

• & : AND
• | : OR

which Mondays had more than 3000 average riders?
which(circ$day =="Monday" & circ$daily > 3000)[1:20]

[1] 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260
[18] 267 274 281

4

AND

Which days had more than 10000 riders overall and more than 3000 riders on the purple line?

Index=which(circ$daily > 10000 & circ$purpleAverage > 3000)
length(Index) # the number of days

[1] 280

head(circ[Index,],2) # first 2 rows

day date orangeBoardings orangeAlightings orangeAverage
551 Friday 07/15/2011 4616 4794 4705
552 Saturday 07/16/2011 4540 4708 4624
purpleBoardings purpleAlightings purpleAverage greenBoardings
551 6464 6122 6293 NA
552 7797 7447 7622 NA
greenAlightings greenAverage bannerBoardings bannerAlightings
551 NA NA NA NA
552 NA NA NA NA
bannerAverage daily
551 NA 10998
552 NA 12246

OR

Which days had more than 10000 riders overall or more than 3000 riders on the purple line?

Index=which(circ$daily > 10000 | circ$purpleAverage > 3000)
length(Index) # the number of days

[1] 693

head(circ[Index,],2) # first 2 rows

day date orangeBoardings orangeAlightings orangeAverage
180 Friday 07/09/2010 2807 2887 2847
188 Saturday 07/17/2010 1528 1498 1513
purpleBoardings purpleAlightings purpleAverage greenBoardings
180 3228 2960 3094.0 NA
188 3726 3399 3562.5 NA
greenAlightings greenAverage bannerBoardings bannerAlightings
180 NA NA NA NA
188 NA NA NA NA
bannerAverage daily
180 NA 5941.0
188 NA 5075.5

5

Subsetting with missing data

Note that logical statements cannot evaluate missing values, and therefore returns an NA:

circ$purpleAverage[1:10] > 0

[1] NA NA NA NA NA NA NA NA NA NA

which(circ$purpleAverage > 0)[1:10]

[1] 148 149 150 151 152 153 154 155 156 157

Subsetting with missing data

You can use the complete.cases() function on a data frame, matrix, or vector, which returns a logical
vector indicating which cases are complete, i.e., they have no missing values.

Selecting on multiple categories

You can select rows where a value is allowed to be several categories. In the homework, we had to subset the
Charm City Circulator dataset by each day. How can we select rows that are 1 of 2 days?
The %in% operator proves useful: “%in% is a more intuitive interface as a binary operator, which returns a
logical vector indicating if there is a match or not for its left operand.” It also returns FALSE for NAs

(circ$day %in% c("Monday","Tuesday"))[1:20] # select entries that are monday or tuesday

[1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[12] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

which(circ$day %in% c("Monday","Tuesday"))[1:20] # which indices are true?

[1] 1 2 8 9 15 16 22 23 29 30 36 37 43 44 50 51 57 58 64 65

Subsetting columns

We touched on this last class. You can select columns using the variable/column names or column index

circ[1:3, c("purpleAverage","orangeAverage")]

purpleAverage orangeAverage
1 NA 952.0
2 NA 796.0
3 NA 1211.5

circ[1:3, c(7,5)]

purpleAlightings orangeAverage
1 NA 952.0
2 NA 796.0
3 NA 1211.5

6

Subsetting columns

You can also remove a column by setting its value to NULL

tmp = circ2
tmp$daily=NULL
tmp[1:3,]

day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952.0 NA NA
2 Tuesday 01/12/2010 796.0 NA NA
3 Wednesday 01/13/2010 1211.5 NA NA
bannerAverage
1 NA
2 NA
3 NA

7

	Data Output
	Data Output
	Data Output
	Data Input - Excel
	More on Packages
	More on Packages
	Installing Packages
	Saving R Data
	Saving R Data
	Saving R Data
	Loading R Data
	Removing R Data
	Subsetting Data
	Subsetting Data
	Subsetting Data
	Selecting on multiple queries
	AND
	OR
	Subsetting with missing data
	Subsetting with missing data
	Selecting on multiple categories
	Subsetting columns
	Subsetting columns

