
Data Manipulation
Module 6

Andrew Jaffe
June 16, 2015

Manipulating Data

So far, we’ve covered how to read in data, and select specific rows and columns.

All of these steps help you set up your analysis or data exploration.

Now we are going to cover manipulating your data and summarizing it using basic statistics and visualizations.

Sorting and ordering

sort(x, decreasing=FALSE): ‘sort (or order) a vector or factor (partially) into ascending or descending
order.’ Note that this returns an object that has been sorted/ordered

order(...,decreasing=FALSE): ‘returns a permutation which rearranges its first argument into ascending
or descending order, breaking ties by further arguments.’ Note that this returns the indices corresponding to
the sorted data.

Sorting and ordering

x = c(1,4,7,6,4,12,9,3)
sort(x)

[1] 1 3 4 4 6 7 9 12

order(x)

[1] 1 8 2 5 4 3 7 6

Note you would have to assign the sorted variable to a new variable to retain it

Sorting and ordering

circ = read.csv("../data/charmcitycirc_reduced.csv", header=TRUE,as.is=TRUE)
circ2 = circ[,c("day","date", "orangeAverage","purpleAverage",

"greenAverage","bannerAverage","daily")]
head(order(circ2$daily,decreasing=TRUE))

[1] 888 887 886 971 880 866

1

head(sort(circ2$daily,decreasing=TRUE))

[1] 22074.5 21951.0 17580.0 16714.0 16366.5 16149.5

The first indicates the rows of circ2 ordered by daily average ridership. The second displays the actual
sorted values of daily average ridership.

Sorting and ordering

circSorted = circ2[order(circ2$daily,decreasing=TRUE),]
circSorted[1:5,]

day date orangeAverage purpleAverage greenAverage
888 Saturday 06/16/2012 6322.0 7797.0 3338.5
887 Friday 06/15/2012 6926.5 8089.5 3485.0
886 Thursday 06/14/2012 5617.5 6521.0 2769.5
971 Friday 09/07/2012 5717.5 7007.0 2688.5
880 Friday 06/08/2012 5782.5 6881.5 2858.0
bannerAverage daily
888 4617.0 22074.5
887 3450.0 21951.0
886 2672.0 17580.0
971 1301.0 16714.0
880 844.5 16366.5

Sorting and ordering

Note that the row names refer to their previous values. You can do something like this to fix:

rownames(circSorted)=NULL
circSorted[1:5,]

day date orangeAverage purpleAverage greenAverage
1 Saturday 06/16/2012 6322.0 7797.0 3338.5
2 Friday 06/15/2012 6926.5 8089.5 3485.0
3 Thursday 06/14/2012 5617.5 6521.0 2769.5
4 Friday 09/07/2012 5717.5 7007.0 2688.5
5 Friday 06/08/2012 5782.5 6881.5 2858.0
bannerAverage daily
1 4617.0 22074.5
2 3450.0 21951.0
3 2672.0 17580.0
4 1301.0 16714.0
5 844.5 16366.5

Creating categorical variables

the rep() [“repeat”] function is useful for creating new variables

2

bg = rep(c("boy","girl"),each=50)
head(bg)

[1] "boy" "boy" "boy" "boy" "boy" "boy"

bg2 = rep(c("boy","girl"),times=50)
head(bg2)

[1] "boy" "girl" "boy" "girl" "boy" "girl"

length(bg)==length(bg2)

[1] TRUE

Creating categorical variables

One frequently-used tool is creating categorical variables out of continuous variables, like generating quantiles
of a specific continuously measured variable.
A general function for creating new variables based on existing variables is the ifelse() function, which
“returns a value with the same shape as test which is filled with elements selected from either yes or no
depending on whether the element of test is TRUE or FALSE.”

ifelse(test, yes, no)

test: an object which can be coerced
to logical mode.

yes: return values for true elements of test.
no: return values for false elements of test.

Creating categorical variables

For example, we can create a new variable that records whether daily ridership on the Circulator was above
10,000.

hi_rider = ifelse(circ$daily > 10000, 1, 0)
head(hi_rider)

[1] 0 0 0 0 0 0

table(hi_rider)

hi_rider
0 1
740 282

Creating categorical variables

You can also nest ifelse() within itself to create 3 levels of a variable.

3

riderLevels = ifelse(circ$daily < 10000, "low",
ifelse(circ$daily > 20000,
"high", "med"))

head(riderLevels)

[1] "low" "low" "low" "low" "low" "low"

table(riderLevels)

riderLevels
high low med
2 740 280

Creating categorical variables

However, it’s much easier to use cut() to create categorical variables from continuous variables.

‘cut divides the range of x into intervals and codes the values in x according to which interval they fall. The
leftmost interval corresponds to level one, the next leftmost to level two and so on.’

cut(x, breaks, labels = NULL, include.lowest = FALSE,
right = TRUE, dig.lab = 3,
ordered_result = FALSE, ...)

Creating categorical variables

x: a numeric vector which is to be converted to a factor by cutting.

breaks: either a numeric vector of two or more unique cut points or a single number (greater than or equal
to 2) giving the number of intervals into which x is to be cut.

labels: labels for the levels of the resulting category. By default, labels are constructed using “(a,b]” interval
notation. If labels = FALSE, simple integer codes are returned instead of a factor.

Factors

Factors are used to represent categorical data, and can also be used for ordinal data (ie categories have an
intrinsic ordering)

Note that R reads in character strings as factors by default in functions like read.table()

‘The function factor is used to encode a vector as a factor (the terms ’category’ and ‘enumerated type’ are
also used for factors). If argument ordered is TRUE, the factor levels are assumed to be ordered.’

factor(x = character(), levels, labels = levels,
exclude = NA, ordered = is.ordered(x))

Factors

Suppose we have a vector of case-control status

4

cc = factor(c("case","case","case",
"control","control","control"))

cc

[1] case case case control control control
Levels: case control

levels(cc) = c("control","case")
cc

[1] control control control case case case
Levels: control case

Factors

Note that the levels are alphabetically ordered by default. We can also specify the levels within the factor call

factor(c("case","case","case","control",
"control","control"),

levels =c("control","case"))

[1] case case case control control control
Levels: control case

factor(c("case","case","case","control",
"control","control"),

levels =c("control","case"), ordered=TRUE)

[1] case case case control control control
Levels: control < case

Factors

Factors can be converted to numeric or character very easily

x = factor(c("case","case","case","control",
"control","control"),

levels =c("control","case"))
as.character(x)

[1] "case" "case" "case" "control" "control" "control"

as.numeric(x)

[1] 2 2 2 1 1 1

Cut

Now that we know more about factors, cut() will make more sense:

5

x = 1:100
cx = cut(x, breaks=c(0,10,25,50,100))
head(cx)

[1] (0,10] (0,10] (0,10] (0,10] (0,10] (0,10]
Levels: (0,10] (10,25] (25,50] (50,100]

table(cx)

cx
(0,10] (10,25] (25,50] (50,100]
10 15 25 50

We can also leave off the labels

cx = cut(x, breaks=c(0,10,25,50,100), labels=FALSE)
head(cx)

[1] 1 1 1 1 1 1

table(cx)

cx
1 2 3 4
10 15 25 50

Note that you have to specify the endpoints of the data, otherwise some of the categories will not be created

cx = cut(x, breaks=c(10,25,50), labels=FALSE)
head(cx)

[1] NA NA NA NA NA NA

table(cx)

cx
1 2
15 25

table(cx,useNA="ifany")

cx
1 2 <NA>
15 25 60

Adding to data frames

6

circ2$riderLevels = cut(circ2$daily,
breaks = c(0,10000,20000,100000))

circ2[1:2,]

day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
bannerAverage daily riderLevels
1 NA 952 (0,1e+04]
2 NA 796 (0,1e+04]

table(circ2$riderLevels, useNA="always")

##
(0,1e+04] (1e+04,2e+04] (2e+04,1e+05] <NA>
731 280 2 133

Adding rows and columns

m1 = matrix(1:9, nrow = 3,
ncol = 3, byrow = FALSE)

m1

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

m2 = matrix(1:9, nrow = 3,
ncol = 3, byrow = TRUE)

m2

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

Adding rows and columns

More generally, you can add columns (or another matrix/data frame) to a data frame or matrix using cbind()
(‘column bind’). You can also add rows (or another matrix/data frame) using rbind() (‘row bind’).

Note that the vector you are adding has to have the same length as the number of rows (for cbind()) or the
number of columns (rbind())

When binding two matrices, they must have either the same number of rows or columns

7

cbind(m1,m2)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 4 7 1 2 3
[2,] 2 5 8 4 5 6
[3,] 3 6 9 7 8 9

Adding rows and columns

rbind(m1,m2)

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
[4,] 1 2 3
[5,] 4 5 6
[6,] 7 8 9

Adding columns manually

circ2$riderLevels = NULL
rider = cut(circ2$daily, breaks = c(0,10000,20000,100000))
circ2 = cbind(circ2,rider)
circ2[1:2,]

day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
bannerAverage daily rider
1 NA 952 (0,1e+04]
2 NA 796 (0,1e+04]

Other manipulations

• abs(x): absolute value
• sqrt(x): square root
• ceiling(x): ceiling(3.475) is 4
• floor(x): floor(3.475) is 3
• trunc(x): trunc(5.99) is 5
• round(x, digits=n): round(3.475, digits=2) is 3.48
• signif(x, digits=n): signif(3.475, digits=2) is 3.5
• log(x): natural logarithm
• log10(x): common logarithm
• exp(x): eˆx

(via: http://statmethods.net/management/functions.html)

8

http://statmethods.net/management/functions.html

	Manipulating Data
	Sorting and ordering
	Sorting and ordering
	Sorting and ordering
	Sorting and ordering
	Sorting and ordering
	Creating categorical variables
	Creating categorical variables
	Creating categorical variables
	Creating categorical variables
	Creating categorical variables
	Creating categorical variables
	Factors
	Factors
	Factors
	Factors
	Cut
	Adding to data frames
	Adding rows and columns
	Adding rows and columns
	Adding rows and columns
	Adding columns manually
	Other manipulations

