Data Visualization
Module 8
Andrew Jaffe

June 17, 2015

Basic Plots

We covered some basic plots previously, but we are going to expand the ability to customize these basic
graphics first.

Read in Data

death = read.csv("http://biostat.jhsph.edu/~ajaffe/files/indicatordeadkids35.csv",
as.is=TRUE,header=TRUE, row.names=1)
death[1:2, 1:5]

X1760 X1761 X1762 X1763 X1764
Afghanistan NA NA NA NA NA
Albania NA NA NA NA NA

We see that the column names were years, and R doesn’t necessarily like to read in a column name that

starts with a number and puts an X there.

We'll just take off that X and get the years.

year = as.integer(gsub("X","",names(death)))
head (year)

[1] 1760 1761 1762 1763 1764 1765

Basic Plots

plot(as.numeric(death["Sweden",])~year)

s < _
- ™

e

(D)]
©

(]

= o |
N«
<)

= —
S

(]

S o |
RS} —
S

(]

c _
>

& o
n) e}
© o g

I I I I I I
1750 1850 1950 2050

year

Basic Plots

The y-axis label isn’t informative, and we can change the label of the y-axis using ylab (x1ab for x), and
main for the main title/label.

plot(as.numeric(death["Sweden",]) ~year,
ylab="# of deaths per family", main = "Sweden")

Sweden

o _
]
> _

e
& o _
E(\I
o
" _
=
@© o
g &
e
o _
3
o
. o)
o

I I I I I I I I
1750 1850 1950 2050

year

Basic Plots

Let’s drop any of the projections and keep it to year 2012, and change the points to blue.

plot(as.numeric(death["Sweden",]) ~year,
ylab="# of deaths per family", main = "Sweden",
xlim = c(1760,2012), pch = 19, cex=1.2,col="blue")

Sweden

o _
(90
> _
e
8 o |
CTJ N
o
” _
<
@© o
g 4
S _|
3+
o _|
© I I
1750 1850 1950

year

Basic Plots

Using scatter.smooth plots the points and runs a loess smoother through the data.

scatter.smooth(as.numeric(death["Sweden",])~year,span=0.2,
ylab="# of deaths per family", main = "Sweden",lwd=3,
xlim = c(1760,2012), pch = 19, cex=0.9,col="grey")

Sweden

o _
(90
> |
e
g o |
E N
o
o |
<
@© o
g 5
© |
3+
o _|
© I I
1750 1850 1950

year

Basic Plots

par (mfrow=c(1,2))
scatter.smooth(as.numeric(death["Sweden",])~year,span=0.2,
ylab="# of deaths per family", main = "Sweden",lwd=3,
xlim = c(1760,2012), pch = 19, cex=0.9,col="grey")
scatter.smooth(as.numeric(death["United Kingdom",])~year,span=0.2,
ylab="# of deaths per family", main = "United Kingdom",lwd=3,
xlim = ¢(1760,2012), pch = 19, cex=0.9,col="grey")

Sweden United Kingdom

2.0 3.0

of deaths per family
1.0
|
of deaths per family

00 05 1.0 15 20 25

I I I I
1750 1850 1950 1750 1850 1950

year year

Basic Plots

par (mfrow=c(1,2))
yl = range(death[c("Sweden","United Kingdom"),])
scatter.smooth(as.numeric(death["Sweden",])~year,span=0.2,ylim=yl,
ylab="# of deaths per family", main = "Sweden",lwd=3,
xlim = c(1760,2012), pch = 19, cex=0.9,col="grey")
scatter.smooth(as.numeric(death["United Kingdom",])~year,span=0.2,
ylab="", main = "United Kingdom",lwd=3,ylim=yl,
xlim = c¢(1760,2012), pch = 19, cex=0.9,col="grey")

Sweden United Kingdom
o o
o | o™ |
% _ —
S
& o | o _|
B N N
o
" _ _
=
© o o
L 47 - 7]
S _ _
H*
o | o |
© | | © | |
1750 1850 1950 1750 1850 1950
year year

Bar Plots

¢ Stacked Bar Charts are sometimes wanted to show distributions of data

Stacked Bar Charts
cars = read.csv("http://biostat.jhsph.edu/~ajaffe/files/kaggleCarAuction.csv",
as.is=TRUE)
counts <- table(cars$IsBadBuy, cars$VehicleAge)
barplot(counts, main="Car Distribution by Age and Status",
xlab="Vehicle Age", col=c("darkblue","red"),
legend = rownames (counts))

Car Distribution by Age and Status

o
o
S 7 m 1
- m O
o
o
O —
o
—
O I II
o _|
o
) I
N N
01 2 3 456 7 89
Vehicle Age
Bar Plots

prop.table allows you to convert a table to proportions (depends on margin - either row percent or column
percent)

Use percentages (column percentages)
barplot (prop.table(counts, 2),
main="Car Distribution by Age and Status",
xlab="Vehicle Age", col=c("darkblue","red"),
legend = rownames (counts))

Car Distribution by Age and Status

o

S -

©

g

©

S

<

o

o\

g

o

S -

01 2 3 456 7 8 9
Vehicle Age

Bar Plots

Using the beside argument in barplot, you can get side-by-side barplots.

Stacked Bar Plot with Colors and Legend
barplot(counts, main="Car Distribution by Age and Status",
xlab="Vehicle Age", col=c("darkblue","red"),
legend = rownames(counts), beside=TRUE)

Car Distribution by Age and Status

1[[“.[1

01 2 3 456 7 8 9

Vehicle Age

Graphics parameters

Set within most plots in the base ‘graphics’ package:

o pch = point shape, http://voteview.com/symbols_ pch.htm

o cex = size/scale

e xlab, ylab = labels for x and y axes

e main = plot title

e lwd = line density

e col = color

o cex.axis, cex.lab, cex.main = scaling/sizing for axes marks, axes labels, and title

Devices

By default, R displays plots in a separate panel. From there, you can export the plot to a variety of image
file types, or copy it to the clipboard.

However, sometimes its very nice to save many plots made at one time to one pdf file, say, for flipping through.
Or being more precise with the plot size in the saved file.

Devices

R has 5 additional graphics devices: bmp(), jpeg(), png(), tiff(), and pdf()

The syntax is very similar for all of them:

http://voteview.com/symbols_pch.htm

pdf ("filename.pdf", width=8, height=8) # inches
plot() # plot 1

plot() # plot 2

etc

dev.off ()

Basically, you are creating a pdf file, and telling R to write any subsequent plots to that file. Once you are
done, you turn the device off. Note that failing to turn the device off will create a pdf file that is corrupt,
that you cannot open.

Boxplots, revisited

These are one of my favorite plots. They are way more informative than the barchart + antenna. ..

boxplot(weight ~ Diet, data=ChickWeight, outline=FALSE)
points(ChickWeight$weight ~ jitter(as.numeric(ChickWeight$Diet),0.5))

150 250 350
I I I

50

Formulas

Formulas have the format of y ~ x and functions taking formulas have a data argument where you pass the
data.frame. You don’t need to use $ or referencing when using formulas:

boxplot(weight ~ Diet, data=ChickWeight, outline=FALSE)

10

ggplot2

ggplot2 is a package of plotting that is very popular and powerful.

library(ggplot2)
gplot(factor(Diet), y= weight, data = ChickWeight, geom = "boxplot")

[}
[
300 - T
[]
s
<
(@]
"D 200 -
=
100 -
I I I I
1 2 3 4
factor(Diet)

Boxplots revisited again

We can do the same plot, by just saying we want a boxplot and points (and jitter the points)

gplot(factor(Diet), y= weight, data = ChickWeight, geom = c("boxplot", "point"),
position = c('identity', "jitter"))

11

factor(Diet)

Histograms again

We can do histograms again using hist. Let’s do histograms of weight at all time points for the chick’s
weights. We reiterate how useful these are to show your data.

hist(ChickWeight$weight, breaks=20)

12

Histogram of ChickWeight$weight

- o _|
) o0}
c
(] o _| -
> ©
(o
@ o _
TS
o _|
(qV
O p— r
| I I I I I |
50 150 250 350
ChickWeight$weight

Multiple Histograms

gplot(x= weight, fill = Diet, data = ChickWeight, geom = c("histogram"))

13

60 -

40 - Diet
= 2
3 | E

20 - .4

o_ [|

| | | |
100 200 300 400
weight
Multiple Histograms

Alpha refers to the opacity of the color

gplot(x= weight, fill = Diet, data = ChickWeight,
geom = c("histogram"), alpha=I(.7))

14

60 -

40 - Diet
= -2
3 L E

20 - .4

O_ [|

| | | |
100 200 300 400
weight
Multiple Densities

We cold also do densities

gplot(x= weight, fill = Diet, data = ChickWeight,
geom = c("density"), alpha=I(.7))

15

0.0075 -

Diet

0.0050 -

density
A W N B

0.0025 -

0.0000 -

| | |
100 200 300
weight

Multiple Densities

gplot(x= weight, colour = Diet, data = ChickWeight, geom = c("density"), alpha=I(.7))

16

0.0075 -

Diet

0.0050 -

density

A W N P

0.0025 -

0.0000 -

} } }
100 200 300
weight
Multiple Densities

You can take off the lines of the bottom like this

gplot(x= weight, colour = Diet, data = ChickWeight,
geom = c("line"), stat="density")

17

0.0075 -

Diet
— 1
2'0.0050 -
0 — 2
o
© — 3
— 4
0.0025 -
0.0000 -

1 1 1
100 200 300
weight
Spaghetti plot

We can make a spaghetti plot by telling ggplot we want a “line”, and each line is colored by Chick.

gplot (x=Time, y=weight, colour = Chick,
data = ChickWeight, geom = "line")

18

300 -

ht

200 -

weig

100 -

Spaghetti plot: Facets
In ggplot2, if you want separate plots for something, these are referred to as facets.
gplot (x=Time, y=weight, colour = Chick,

facets = ~ Diet,
data = ChickWeight, geom = "line")

19

300 - — 7
— 24
100 - . 22
— 23
— 28
300 - — 26
— 25
200 - —
100 - —21
— 33

]
5 10 15 20 0 5 10 15 20 — 37
Time — 36

weight
|
N

Spaghetti plot: Facets
We can turn off the legend (referred to a “guide” in ggplot2). (Note - there is different syntax with the +)

gplot (x=Time, y=weight, colour = Chick,
facets = ~ Diet,
data = ChickWeight, geom = "line") +
guides(colour=FALSE)

20

300 -
200 -
100 -
300 -
200 -
100 -

5 15 20 0 5
Time

weight

Colors
R relies on color ‘palettes’.
palette("default")

plot(1:8, 1:8, type="n")
text(1:8, 1:8, lab = palette(), col = 1:8)

21

00]
N~
© — magenta
o 7]
AR blue
™M - green3
N — red
— —Jack
| | | | | |
1 2 3 4 5 6 7 8
1:8
Colors

The default color palette is pretty bad, so you can try to make your own.

palette(c("darkred","orange","blue"))
plot(1:3,1:3,col=1:3,pch =19,cex=2)

22

1:3
20 25

15

1.0

1:3

Colors
It’s actually pretty hard to make a good color palette. Luckily, smart and artistic people have spent a lot
more time thinking about this. The result is the ‘RColorBrewer’ package

RColorBrewer::display.brewer.all() will show you all of the palettes available. You can even print it out and
keep it next to your monitor for reference.

The help file for brewer.pal() gives you an idea how to use the package.

You can also get a “sneak peek” of these palettes at: www.colorbrewer2.com . You would provide the number
of levels or classes of your data, and then the type of data: sequential, diverging, or qualitative. The names
of the RColorBrewer palettes are the string after ‘pick a color scheme:’

Colors

palette("default")
plot(weight ~ Time, data= ChickWeight,
pch = 19, col = Diet)

23

o
m_
]
S
e o °
= _| 4
‘133 °
3 -ll
— ' I
e
8—...' o
[[[
0 5 10
Time

library (RColorBrewer)

palette(brewer.pal(5,"Dark2"))

plot(weight ~ Time, data=ChickWeight,
pch = 19, col = Diet)

24

o
Lr)_
™
o
= °
5 o
03-’ °
3 -Il
— ' I
o o
8—.'.' °
[[[[
0 5 10 15
Time

20

library(RColorBrewer)
palette(brewer.pal(5, "Dark2"))
plot(weight ~ jitter(Time,amount=0.2),
data=ChickWeight,
pch = 19, col = Diet,xlab="Time")

25

350
I

weight
250
|

50 150
L1

L
@
e
OGP o
‘amRpece

Adding legends

The legend() command adds a legend to your plot. There are tons of arguments to pass it.

x, y=NULL: this just means you can give (x,y) coordinates, or more commonly just give x, as a character
string: “top”,“bottom”,“topleft”, “bottomleft” “topright”,“bottomright”.

legend: unique character vector, the levels of a factor
pch, lwd: if you want points in the legend, give a pch value. if you want lines, give a lwd value.

col: give the color for each legend level

palette(brewer.pal(5, "Dark2"))
plot(weight ~ jitter(Time,amount=0.2),
data=ChickWeight,
pch = 19, col = Diet,xlab="Time")
legend("topleft", paste('"Diet",
levels(ChickWeight$Diet)),
1:length(levels(ChickWeight$Diet)),
3, ncol = 2)

col
1lwd

26

350
I
°

= Dietl = Diet3 e
| = Diet2 —— Diet4 4

weight

150 250
[N

Qg &
o R ¢ 00
oomalp» ¢

& Qe 090 co ©
o%

LYY)

Coloring by variables

load("../data/charmcirc.rda")
palette(brewer.pal(7,"Dark2"))
dd = factor(circ$day)
plot(orangeAverage ~ greenAverage,data=circ,
pch=19, col = as.numeric(dd))
legend("bottomright", levels(dd), col=1:length(dd), pch = 19)

27

I o
S] °
o
(o]
o _
(o)
8 o
o 8 :
z < ® Friday
> — ® Monday
8 o e Saturday
S 8 ® Sunday
~ ® Thursday
N . Tuesday
o e ¢ Wednesday

I I I I I I
0 1000 2000 3000 4000 5000

greenAverage

Coloring by variable

dd = factor(circ$day, levels=c("Monday","Tuesday","Wednesday","Thursday",
"Friday","Saturday","Sunday"))
plot (orangeAverage ~ greenAverage, data=circ,
pch=19, col = as.numeric(dd))
legend("bottomright", levels(dd), col=1:length(dd), pch = 19)

28

1 []
o
o _|
o
O
o _
8 o
s 8 - o
z < o Monday
s - ® Tuesday
8 o e Wednesday
S 3 - e Thursday
~ ® Friday
N ° Saturday
o e ® Sunday

I I I I I I
0 1000 2000 3000 4000 5000

greenAverage

More powerful graphics

There are two very common packages for making very nice looking graphics.
lattice: http://lmdvr.r-forge.r-project.org/figures/figures.html
ggplot2: http://docs.ggplot2.org/current/index.html

Lattice

library(lattice)
xyplot(weight ~ Time | Diet, data = ChickWeight)

29

http://lmdvr.r-forge.r-project.org/figures/figures.html
http://docs.ggplot2.org/current/index.html

0O 5 10 15 20
A I N N (R N NN R B

3 4
| oS S 300
] 0085 @g— 200
- !;i o8 68885 oo
2 0008°" 000
dg).’ 1 2
=
300 o8l
200 2o 8 Ooéggg_
] 8 ' i
0 ogﬁis o°o©§§oooooo
I I I

T T T T T 1
0 5 10 15 20

Lattice

densityplot(~weight | Diet, data = ChickWeight)

30

0100 300

3 4
— — 0.008
— — 0.006
- — 0.004
— — 0.002
% . ~ 0.000
- 1 2
o 0.008 — —
0.006 — —
0.004 —
0.002 — —
0.000 T T T 1 T T T T
0 100 300
weight
Lattice

rownames (circ2) = circ2$date
mat = as.matrix(circ2[975:nrow(circ2),3:6])
levelplot(t(mat), aspect = "fill")

31

column

T ! ' ' ' 8000
- 7000
- 6000
- 5000
- 4000
- 3000
- 2000
- 1000
i o
- I I I I

orangepugrEgireayaarpgdverage
row

Lattice

library (RColorBrewer)
theSeq = seq(0,max(mat,na.rm=TRUE), by=50)
my.col = colorRampPalette(brewer.pal(
5,"Greens")) (length(theSeq))
levelplot(t(mat), aspect = "fill",at = theSeq,
col.regions = my.col,xlab="Route",ylab="Date")

32

7000

6000

5000

—- 4000

Date

AR

— 3000
— 2000

— 1000

Lattice

0
T T
orangepugrEgireayaarpgdverage

Route

tmp=death[grep("s$", rownames(death)), 200:251]

yr = gsub("X","",names (tmp))

theSeq = seq(0,max(tmp,na.rm=TRUE), by=0.05)

my.col <- colorRampPalette(brewer.pal(5,"Reds")) (length(theSeq))

levelplot(t(tmp), aspect = "fill",at = theSeq,col.regions = my.col,
scales=list (x=1list(label=yr, rot=90, cex=0.7)))

33

United States

United Arab Emirates
Solomon Islands
Saint Vincent and the Grenadines
Philippines
Netherlands Antilles
Netherlands
Mauritius

Maldives

Laos

Honduras

Cyprus

Comoros

Channel Islands
Belarus

Barbados

Bahamas

column

ggplot2

Useful links:

DO HNMTLOON0NO—HNMILOWONODN O —HANM FLOON-CODN O AN M FLOON- 00N O AN LOWON00O
LOOWOOWOOOWOOWOONNI=II=NN-INN-N-00000000000000 00OV N ID NN NN NO OO0

row

o http://docs.ggplot2.org/0.9.3/index.html
o http://www.cookbook-r.com/Graphs/

34

3.0

2.5

2.0

15

1.0

0.5

0.0

http://docs.ggplot2.org/0.9.3/index.html
http://www.cookbook-r.com/Graphs/

	Basic Plots
	Read in Data
	Basic Plots
	Basic Plots
	Basic Plots
	Basic Plots
	Basic Plots
	Basic Plots
	Bar Plots
	Bar Plots
	Bar Plots
	Graphics parameters
	Devices
	Devices
	Boxplots, revisited
	Formulas
	ggplot2
	Boxplots revisited again
	Histograms again
	Multiple Histograms
	Multiple Histograms
	Multiple Densities
	Multiple Densities
	Multiple Densities
	Spaghetti plot
	Spaghetti plot: Facets
	Spaghetti plot: Facets
	Colors
	Colors
	Colors
	Colors
	Adding legends
	
	Coloring by variables
	Coloring by variable
	More powerful graphics
	Lattice
	Lattice
	Lattice
	Lattice
	Lattice
	ggplot2

