
Data Input/Output

Andrew Jaffe

June 13, 2016

Before we get Started: Working Directories

I R looks for files on your computer relative to the “working”
directory

I It’s always safer to set the working directory at the beginning
of your script. Note that setting the working directory created
the necessary code that you can copy into your script.

I Example of help file

get the working directory
getwd()
setwd("~/summerR_2016/Lectures")

Setting a Working Directory

I Setting the directory can sometimes be finicky
I Windows: Default directory structure involves single backslashes

(“"), but R interprets these as”escape" characters. So you must
replace the backslash with forward slashed (“/”) or two
backslashes (“\”)

I Mac/Linux: Default is forward slashes, so you are okay
I Typical linux/DOS directory structure syntax applies

I “..” goes up one level
I “./” is the current directory
I “~” is your home directory

Working Directory

Note that the dir() function interfaces with your operating system
and can show you which files are in your current working directory.
You can try some directory navigation:

dir("./") # shows directory contents

[1] "Data_IO.html" "Data_IO.pdf"
[3] "Data_IO.R" "Data_IO.Rmd"
[5] "monuments_newNames.csv"

dir("..")

[1] "lab" "lecture"

Working Directory

I Copy the code to set your working directory from the History
tab in RStudio (top right)

I Confirm the directory contains “day1.R” using dir()

Data Input

I ‘Reading in’ data is the first step of any real project/analysis
I R can read almost any file format, especially via add-on

packages
I We are going to focus on simple delimited files first

I tab delimited (e.g. ‘.txt’)
I comma separated (e.g. ‘.csv’)
I Microsoft excel (e.g. ‘.xlsx’)

Data Aside

I Everything we do in class will be using real publicly available
data - there are few ‘toy’ example datasets and ‘simulated’ data

I OpenBaltimore and Data.gov will be sources for the first few
days

Data Input

Monuments Dataset: “This data set shows the point location of
Baltimore City monuments. However, the completness and
currentness of these data are uncertain.”

I Download data from http:
//www.aejaffe.com/summerR_2016/data/Monuments.csv

I Save it (or move it) to the same folder as your day1.R script
I Within RStudio: Session –> Set Working Directory –> To

Source File Location
I (data downloaded from https://data.baltimorecity.

gov/Community/Monuments/cpxf-kxp3)

http://www.aejaffe.com/summerR_2016/data/Monuments.csv
http://www.aejaffe.com/summerR_2016/data/Monuments.csv
https://data.baltimorecity.gov/Community/Monuments/cpxf-kxp3
https://data.baltimorecity.gov/Community/Monuments/cpxf-kxp3

Data Input

R Studio features some nice “drop down” support, where you can
run some tasks by selecting them from the toolbar.
For example, you can easily import text datasets using the “Tools
–> Import Dataset” command. Selecting this will bring up a new
screen that lets you specify the formatting of your text file.
After importing a datatset, you get the corresponding R commands
that you can enter in the console if you want to re-import data.

Data Input
So what is going on “behind the scenes”?
read.table(): Reads a file in table format and creates a data
frame from it, with cases corresponding to lines and variables to
fields in the file.

the four ones I've put at the top are the important inputs
read.table(file, # filename

header = FALSE, # are there column names?
sep = "", # what separates columns?
as.is = !stringsAsFactors, # do you want character strings as factors or characters?
quote = "\"'", dec = ".", row.names, col.names,
na.strings = "NA", nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE, comment.char = "#",
stringsAsFactors = default.stringsAsFactors())

for example: `read.table("file.txt", header = TRUE, sep="\t", as.is=TRUE)`

Data Input

I The filename is the path to your file, in quotes
I The function will look in your “working directory” if no

absolute file path is given
I Note that the filename can also be a path to a file on a website

(e.g. ‘www.someurl.com/table1.txt’)

Data Input

There is a ‘wrapper’ function for reading CSV files:

read.csv

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",
fill = TRUE, comment.char = "", ...)

read.table(file = file, header = header, sep = sep, quote = quote,
dec = dec, fill = fill, comment.char = comment.char, ...)

<bytecode: 0x00000000084e8278>
<environment: namespace:utils>

Note: the ... designates extra/optional arguments that can be
passed to read.table() if needed

Data Input
I Here would be reading in the data from the command line,

specifying the file path:

mon = read.csv("../../data/Monuments.csv",header=TRUE,as.is=TRUE)
head(mon)

name zipCode neighborhood councilDistrict
1 James Cardinal Gibbons 21201 Downtown 11
2 The Battle Monument 21202 Downtown 11
3 Negro Heroes of the U.S Monument 21202 Downtown 11
4 Star Bangled Banner 21202 Downtown 11
5 Flame at the Holocaust Monument 21202 Downtown 11
6 Calvert Statue 21202 Downtown 11

policeDistrict Location.1
1 CENTRAL 408 CHARLES ST\nBaltimore, MD\n
2 CENTRAL
3 CENTRAL
4 CENTRAL 100 HOLLIDAY ST\nBaltimore, MD\n
5 CENTRAL 50 MARKET PL\nBaltimore, MD\n
6 CENTRAL 100 CALVERT ST\nBaltimore, MD\n

Data Input

colnames(mon) # column names

[1] "name" "zipCode" "neighborhood" "councilDistrict"
[5] "policeDistrict" "Location.1"

head(mon$zipCode) # first few rows

[1] 21201 21202 21202 21202 21202 21202

Data Input

The read.table() function returns a data.frame, which is the
primary data format for most data cleaning and analyses

str(mon) # structure of an R object

'data.frame': 84 obs. of 6 variables:
$ name : chr "James Cardinal Gibbons" "The Battle Monument" "Negro Heroes of the U.S Monument" "Star Bangled Banner" ...
$ zipCode : int 21201 21202 21202 21202 21202 21202 21202 21211 21213 21211 ...
$ neighborhood : chr "Downtown" "Downtown" "Downtown" "Downtown" ...
$ councilDistrict: int 11 11 11 11 11 11 11 7 14 14 ...
$ policeDistrict : chr "CENTRAL" "CENTRAL" "CENTRAL" "CENTRAL" ...
$ Location.1 : chr "408 CHARLES ST\nBaltimore, MD\n" "" "" "100 HOLLIDAY ST\nBaltimore, MD\n" ...

Data Input
Changing variable names in data.frames works using the names()
function, which is analagous to colnames() for data frames (they
can be used interchangeably)

names(mon)[1] = "Name"
names(mon)

[1] "Name" "zipCode" "neighborhood" "councilDistrict"
[5] "policeDistrict" "Location.1"

names(mon)[1] = "name"
names(mon)

[1] "name" "zipCode" "neighborhood" "councilDistrict"
[5] "policeDistrict" "Location.1"

Data Output

While its nice to be able to read in a variety of data formats, it’s
equally important to be able to output data somewhere.
write.table(): prints its required argument x (after converting it
to a data.frame if it is not one nor a matrix) to a file or
connection.

write.table(x,file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"),
fileEncoding = "")

Data Output

x: the R data.frame or matrix you want to write
file: the file name where you want to R object written. It can be
an absolute path, or a filename (which writes the file to your
working directory)
sep: what character separates the columns?

I “,” = .csv - Note there is also a write.csv() function
I “�’’ = tab delimited

row.names: I like setting this to FALSE because I email these to
collaborators who open them in Excel

Data Output

For example, we can write back out the Monuments dataset with
the new column name:

names(mon)[6] = "Location"
write.csv(mon, file="monuments_newNames.csv", row.names=FALSE)

Note that row.names=TRUE would make the first column contain
the row names, here just the numbers 1:nrow(mon), which is not
very useful for Excel. Note that row names can be
useful/informative in R if they contain information (but then they
would just be a separate column).

Data Input - Excel

Many data analysts collaborate with researchers who use Excel to
enter and curate their data. Often times, this is the input data for
an analysis. You therefore have two options for getting this data
into R:

I Saving the Excel sheet as a .csv file, and using read.csv()
I Using an add-on package, like xlsx, readxl, or openxlsx

For single worksheet .xlsx files, I often just save the spreadsheet as a
.csv file (because I often have to strip off additional summary data
from the columns)
For an .xlsx file with multiple well-formated worksheets, I use the
xlsx, readxl, or openxlsx package for reading in the data.

Data Input - Other Software

I haven package (https://cran.r-project.org/web/
packages/haven/index.html) reads in SAS, SPSS, Stata
formats

I readxl package - the read_excel function can read Excel
sheets easily

I readr package - Has read_csv/write_csv and read_table
functions similar to read.csv/write.csv and read.table. Has
different defaults, but can read much faster for very large
data sets

I sas7bdat reads .sas7bdat files
I foreign package - can read all the formats as haven. Around

longer (aka more testing), but not as maintained (bad for
future).

https://cran.r-project.org/web/packages/haven/index.html
https://cran.r-project.org/web/packages/haven/index.html

