Variables

Basic R

John Muschelli

January 4, 2016

Getting Started

- You should have the latest version of R installed!
- Open R Studio
- Files -> New -> R Script
- Save the blank R script as "day1.R" in a directory of your choosing
- Add a comment header

Commenting in Scripts

Add a comment header to day1.R :\# is the comment symbol

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

```
# Title: Demo R Script
# Author: John Muschelli
# Date: 1/4/2016
# Purpose: Demonstrate comments in R
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# nothing to its right is evaluated
\# this \# is still a comment
\#\#\# you can use many \#'s as you want
\# sometimes you have a really long comment,
\# like explaining what you are doing
\# for a step in analysis.
\# Take it to another line

Explaining output on slides

In slides, a command (we'll also call them code or a code chunk) will look like this

```
print("I'm code")
```

[1] "I'm code"

And then directly after it, will be the output of the code. So print("I'm code") is the code chunk and [1] "I'm code" is the output.

R as a calculator

$2+2$
[1] 4
$2 * 4$
[1] 8

2 - 3
[1] 8

Note, when you type your command, R inherently thinks you want to print the result.

R as a calculator

- The R console is a full calculator
- Try to play around with it:
- +, -, /, * are add, subtract, divide and multiply
- ^ or ${ }^{* *}$ is power
- parentheses - (and) - work with order of operations

R as a calculator

$2+(2 * 3)^{\wedge} 2$
[1] 38
$(1+3) / 2+45$
[1] 47

R as a calculator

Try evaluating the following:

- $2+2$ * $3 / 4-3$
- 2 * $3 / 4$ * 2
- $2 \wedge 4$ - 1
- You can create variables from within the R environment and from files on your computer
- R uses "=" or "<-" to assign values to a variable name
- Variable names are case-sensitive, i.e. X and x are different
$\mathrm{x}=2$ \# Same as: $x<-2$
X
[1] 2
x * 4
[1] 8
$x+2$
[1] 4

R variables

- The most comfortable and familiar class/data type for many of you will be data.frame
- You can think of these as essentially Excel spreadsheets with rows (usually subjects or observations) and columns (usually variables)

R variables

- data.frames are somewhat advanced objects in R; we will start with simpler objects;
- Here we introduce " 1 dimensional" classes; these are often referred to as 'vectors'
- Vectors can have multiple sets of observations, but each observation has to be the same class.
class (x)
[1] "numeric"
y = "hello world!"
print(y)
[1] "hello world!"
class(y)

R variables

Try assigning your full name to an R variable called name

R variables

Try assigning your full name to an R variable called name
name = "Andrew Jaffe"
name
[1] "Andrew Jaffe"

The 'combine' function

The function $c()$ collects/combines/joins single R objects into a vector of R objects. It is mostly used for creating vectors of numbers, character strings, and other data types.
$x<-c(1,4,6,8)$
x
[1] 1468
class (x)
[1] "numeric"

The 'combine' function

Try assigning your first and last name as 2 separate character strings into a single vector called name2

The 'combine' function

Try assigning your first and last name as 2 separate character strings into a length-2 vector called name2
name2 = c("Andrew","Jaffe")
name2
[1] "Andrew" "Jaffe"

R variables

length(): Get or set the length of vectors (including lists) and factors, and of any other R object for which a method has been defined.
length(x)
[1] 4
y
[1] "hello world!"
length(y)
[1] 1

R variables

What do you expect for the length of the name variable? What about the name 2 variable?

What are the lengths of each?

R variables

What do you expect for the length of the name variable? What about the name 2 variable?

What are the lengths of each?
length(name)
[1] 1
length(name2)
[1] 2

R variables

You can perform functions to entire vectors of numbers very easily.
$x+2$
[1] $3 \quad 6 \quad 810$
x * 3
[1] 3121824
$\mathrm{x}+\mathrm{c}(1,2,3,4)$
[1] 266912

R variables

But things like algebra can only be performed on numbers.
$>$ name2 +4
[1] Error in name2 * 4 : non-numeric argument to binary operator

R variables

And save these modified vectors as a new vector.

```
\(y=x+c(1,2,3,4)\)
y
```

[1] $2 \quad 6 \quad 9 \quad 12$

Note that the R object y is no longer "Hello World!" - It has effectively been overwritten by assigning new data to the variable

R variables

- You can get more attributes than just class. The function str gives you the structure of the object.

```
str(x)
    num [1:4] 1 4 6 8
str(y)
    num [1:4] 2 6 9 12
```

This tells you that x is a numeric vector and tells you the length.

Review

- Creating a new script
- Using R as a calculator
- Assigning values to variables
- Performing algebra on numeric variables

