
Data Cleaning

Andrew Jaffe

January 6, 2016

Data

I We will be using multiple data sets in this lecture:
I Salary, Monument, Circulator, and Restaurant from

OpenBaltimore: https:
//data.baltimorecity.gov/browse?limitTo=datasets

I Gap Minder - very interesting way of viewing longitudinal data
I Data is here - http://www.gapminder.org/data/

I http://spreadsheets.google.com/pub?key=
rMsQHawTObBb6_U2ESjKXYw&output=xls

https://data.baltimorecity.gov/browse?limitTo=datasets
https://data.baltimorecity.gov/browse?limitTo=datasets
http://www.gapminder.org/data/
http://spreadsheets.google.com/pub?key=rMsQHawTObBb6_U2ESjKXYw&output=xls
http://spreadsheets.google.com/pub?key=rMsQHawTObBb6_U2ESjKXYw&output=xls
http://spreadsheets.google.com/pub?key=rMsQHawTObBb6_U2ESjKXYw&output=xls
http://spreadsheets.google.com/pub?key=rMsQHawTObBb6_U2ESjKXYw&output=xls

Data Cleaning

In general, data cleaning is a process of investigating your data for
inaccuracies, or recoding it in a way that makes it more manageable.

MOST IMPORTANT RULE - LOOK AT YOUR DATA!

Again - table, summarize, is.na, any, all are useful.

Missing data types

One of the most important aspects of data cleaning is missing
values.

Types of “missing” data:

I NA - general missing data
I NaN - stands for “Not a Number”, happens when you do 0/0.
I Inf and -Inf - Infinity, happens when you take a positive

number (or negative number) by 0.

Finding Missing data

Each missing data type has a function that returns TRUE if the data
is missing:

I NA - is.na
I NaN - is.nan
I Inf and -Inf - is.infinite
I is.finite returns FALSE for all missing data and TRUE for

non-missing
I complete.cases on a data.frame/matrix returns TRUE if

all values in that row of the object are not missing.

Missing Data with Logicals

One important aspect (esp with subsetting) is that logical
operations return NA for NA values. Think about it, the data could
be > 2 or not we don’t know, so R says there is no TRUE or FALSE,
so that is missing:

x = c(0, NA, 2, 3, 4)
x > 2

[1] FALSE NA FALSE TRUE TRUE

Missing Data with Logicals

What to do? What if we want if x > 2 and x isn’t NA?
Don’t do x != NA, do x > 2 and x is NOT NA:

x != NA

[1] NA NA NA NA NA

x > 2 & !is.na(x)

[1] FALSE FALSE FALSE TRUE TRUE

Missing Data with Logicals
What about seeing if a value is equal to multiple values? You can
do (x == 1 | x == 2) & !is.na(x), but that is not efficient.
Introduce the %in% operator:

(x == 0 | x == 2) # has NA

[1] TRUE NA TRUE FALSE FALSE

(x == 0 | x == 2) & !is.na(x) # No NA

[1] TRUE FALSE TRUE FALSE FALSE

x %in% c(0, 2) # NEVER has NA and returns logical

[1] TRUE FALSE TRUE FALSE FALSE

Missing Data with Operations

Similarly with logicals, operations/arithmetic with NA will result in
NAs:

x + 2

[1] 2 NA 4 5 6

x * 2

[1] 0 NA 4 6 8

Creating One-way Tables
Here we will use table to make tabulations of the data. Look at
?table to see options for missing data.

table(x)

x
0 2 3 4
1 1 1 1

table(x, useNA = "ifany")

x
0 2 3 4 <NA>
1 1 1 1 1

Creating One-way Tables

You can set useNA = "always" to have it always have a column
for NA

table(c(0, 1, 2, 3, 2, 3, 3, 2,2, 3),
useNA = "always")

0 1 2 3 <NA>
1 1 4 4 0

Creating Two-way Tables

A two-way table. If you pass in 2 vectors, table creates a
2-dimensional table.

tab <- table(c(0, 1, 2, 3, 2, 3, 3, 2,2, 3),
c(0, 1, 2, 3, 2, 3, 3, 4, 4, 3),
useNA = "always")

Finding Row or Column Totals

margin.table finds the marginal sums of the table. margin is 1
for rows, 2 for columns in general in R. Here is the column sums of
the table:

margin.table(tab, 2)

0 1 2 3 4 <NA>
1 1 2 4 2 0

Proportion Tables
prop.table finds the marginal proportions of the table. Think of it
dividing the table by it’s respective marginal totals. If margin not
set, divides by overall total.

prop.table(tab)

0 1 2 3 4 <NA>
0 0.1 0.0 0.0 0.0 0.0 0.0
1 0.0 0.1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.2 0.0 0.2 0.0
3 0.0 0.0 0.0 0.4 0.0 0.0
<NA> 0.0 0.0 0.0 0.0 0.0 0.0

prop.table(tab,1)

0 1 2 3 4 <NA>
0 1.0 0.0 0.0 0.0 0.0 0.0
1 0.0 1.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.5 0.0 0.5 0.0
3 0.0 0.0 0.0 1.0 0.0 0.0
<NA>

Download Salary FY2014 Data

From https://data.baltimorecity.gov/City-Government/
Baltimore-City-Employee-Salaries-FY2014/2j28-xzd7
http://www.aejaffe.com/winterR_2016/data/Baltimore_
City_Employee_Salaries_FY2014.csv

Read the CSV into R Sal:

Sal = read.csv("http://www.aejaffe.com/winterR_2016/data/Baltimore_City_Employee_Salaries_FY2014.csv",
as.is = TRUE)

https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2014/2j28-xzd7
https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2014/2j28-xzd7
http://www.aejaffe.com/winterR_2016/data/Baltimore_City_Employee_Salaries_FY2014.csv
http://www.aejaffe.com/winterR_2016/data/Baltimore_City_Employee_Salaries_FY2014.csv

Checking for logical conditions
I any() - checks if there are any TRUEs
I all() - checks if ALL are true

head(Sal,2)

Name JobTitle AgencyID
1 Aaron,Keontae E AIDE BLUE CHIP W02200
2 Aaron,Patricia G Facilities/Office Services II A03031

Agency HireDate AnnualSalary GrossPay
1 Youth Summer 06/10/2013 $11310.00 $873.63
2 OED-Employment Dev 10/24/1979 $53428.00 $52868.38

any(is.na(Sal$Name)) # are there any NAs?

[1] FALSE

Example of Recoding: base R

For example, let’s say gender was coded as Male, M, m, Female, F,
f. Using Excel to find all of these would be a matter of filtering and
changing all by hand or using if statements.

In R, you can simply do something like:

data$gender[data$gender %in%
c("Male", "M", "m")] <- "Male"

Example of Recoding with recode: car package

You can also recode a vector:

library(car, quietly = TRUE)
x = rep(c("Male", "M", "m", "f", "Female", "female"),

each = 3)
car::recode(x, "c('m', 'M', 'male') = 'Male';

c('f', 'F', 'female') = 'Female';")

[1] "Male" "Male" "Male" "Male" "Male" "Male" "Male"
[8] "Male" "Male" "Female" "Female" "Female" "Female" "Female"

[15] "Female" "Female" "Female" "Female"

Example of Recoding with revalue: plyr
You can also revalue a vector with the revalue command

library(plyr)

You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)

Attaching package: 'plyr'

The following object is masked from 'package:matrixStats':

count

The following objects are masked from 'package:dplyr':

arrange, count, desc, failwith, id, mutate, rename, summarise,
summarize

The following object is masked from 'package:lubridate':

here

plyr::revalue(x, c("M" = "Male", "m" = "Male",
"f" = "Female", "female" = "Female"))

[1] "Male" "Male" "Male" "Male" "Male" "Male" "Male"
[8] "Male" "Male" "Female" "Female" "Female" "Female" "Female"

[15] "Female" "Female" "Female" "Female"

Example of Cleaning: more complicated

Sometimes though, it’s not so simple. That’s where functions that
find patterns come in very useful.

table(gender)

gender
F FeMAle FEMALE Fm M Ma mAle Male MaLe MALE

75 82 74 89 89 79 87 89 88 95
Man Woman
73 80

Pasting strings with paste and paste0
Paste can be very useful for joining vectors together:

paste("Visit", 1:5, sep = "_")

[1] "Visit_1" "Visit_2" "Visit_3" "Visit_4" "Visit_5"

paste("Visit", 1:5, sep = "_", collapse = " ")

[1] "Visit_1 Visit_2 Visit_3 Visit_4 Visit_5"

paste("To", "is going be the ", "we go to the store!", sep = "day ")

[1] "Today is going be the day we go to the store!"

and paste0 can be even simpler see ?paste0
paste0("Visit",1:5)

[1] "Visit1" "Visit2" "Visit3" "Visit4" "Visit5"

Paste Depicting How Collapse Works

paste(1:5)

[1] "1" "2" "3" "4" "5"

paste(1:5, collapse = " ")

[1] "1 2 3 4 5"

Useful String Functions

Useful String functions

I toupper(), tolower() - uppercase or lowercase your data:
I str_trim() (in the stringr package) or trimws in base

I will trim whitespace

I nchar - get the number of characters in a string
I paste() - paste strings together with a space
I paste0 - paste strings together with no space as default

The stringr package

Like dplyr, the stringr package:

I Makes some things more intuitive
I Is different than base R
I Is used on forums for answers
I Has a standard format for most functions

I the first argument is a string like first argument is a
data.frame in dplyr

Splitting/Find/Replace and Regular Expressions

I R can do much more than find exact matches for a whole string
I Like Perl and other languages, it can use regular expressions.
I What are regular expressions?

I Ways to search for specific strings
I Can be very complicated or simple
I Highly Useful - think “Find” on steroids

A bit on Regular Expressions

I http:
//www.regular-expressions.info/reference.html

I They can use to match a large number of strings in one
statement

I . matches any single character
I * means repeat as many (even if 0) more times the last

character
I ? makes the last thing optional
I ˆ matches start of vector ˆa - starts with “a”
I $ matches end of vector b$ - ends with “b”

http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html

Substringing

Very similar:

Base R

I substr(x, start, stop) - substrings from position start to
position stop

I strsplit(x, split) - splits strings up - returns list!

stringr

I str_sub(x, start, end) - substrings from position start to
position end

I str_split(string, pattern) - splits strings up - returns
list!

Splitting String: base R

In base R, strsplit splits a vector on a string into a list

x <- c("I really", "like writing", "R code programs")
y <- strsplit(x, split = " ") # returns a list
y

[[1]]
[1] "I" "really"

[[2]]
[1] "like" "writing"

[[3]]
[1] "R" "code" "programs"

Splitting String: stringr

stringr::str_split do the same thing:

library(stringr)
y2 <- str_split(x, " ") # returns a list
y2

[[1]]
[1] "I" "really"

[[2]]
[1] "like" "writing"

[[3]]
[1] "R" "code" "programs"

Using a fixed expression

One example case is when you want to split on a period “.”. In
regular expressions . means ANY character, so

str_split("I.like.strings", ".")

[[1]]
[1] "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""

str_split("I.like.strings", fixed("."))

[[1]]
[1] "I" "like" "strings"

Let’s extract from y
suppressPackageStartupMessages(library(dplyr)) # must be loaded AFTER plyr
y[[2]]

[1] "like" "writing"

sapply(y, dplyr::first) # on the fly

[1] "I" "like" "R"

sapply(y, nth, 2) # on the fly

[1] "really" "writing" "code"

sapply(y, last) # on the fly

[1] "really" "writing" "programs"

‘Find’ functions: base R

grep: grep, grepl, regexpr and gregexpr search for matches to
argument pattern within each element of a character vector: they
differ in the format of and amount of detail in the results.

grep(pattern, x, fixed=FALSE), where:

I pattern = character string containing a regular expression to be
matched in the given character vector.

I x = a character vector where matches are sought, or an object
which can be coerced by as.character to a character vector.

I If fixed=TRUE, it will do exact matching for the phrase
anywhere in the vector (regular find)

‘Find’ functions: stringr

str_detect, str_subset, str_replace, and str_replace_all
search for matches to argument pattern within each element of a
character vector: they differ in the format of and amount of detail
in the results.

I str_detect - returns TRUE if pattern is found
I str_subset - returns only the strings which pattern were

detected
I convenient wrapper around x[str_detect(x, pattern)]

I str_extract - returns only strings which pattern were
detected, but ONLY the pattern

I str_replace - replaces pattern with replacement the first
time

I str_replace_all - replaces pattern with replacement as
many times matched

‘Find’ functions: stringr compared to base R

Base R does not use these functions. Here is a “translator” of the
stringr function to base R functions

I str_detect - similar to grepl (return logical)
I grep(value = FALSE) is similar to which(str_detect())
I str_subset - similar to grep(value = TRUE) - return value

of matched
I str_replace - similar to sub - replace one time
I str_replace_all - similar to gsub - replace many times

Let’s look at modifier for stringr

?modifiers

I fixed - match everything exactly
I regexp - default - uses regular expressions
I ignore_case is an option to not have to use tolower

Important Comparisons

Base R:

I Argument order is (pattern, x)
I Uses option (fixed = TRUE)

stringr

I Argument order is (string, pattern) aka (x, pattern)
I Uses function fixed(pattern)

‘Find’ functions: Finding Indices
These are the indices where the pattern match occurs:

grep("Rawlings",Sal$Name)

[1] 13832 13833 13834 13835

which(grepl("Rawlings", Sal$Name))

[1] 13832 13833 13834 13835

which(str_detect(Sal$Name, "Rawlings"))

[1] 13832 13833 13834 13835

‘Find’ functions: Finding Logicals

These are the indices where the pattern match occurs:

head(grepl("Rawlings",Sal$Name))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

head(str_detect(Sal$Name, "Rawlings"))

[1] FALSE FALSE FALSE FALSE FALSE FALSE

‘Find’ functions: finding values, base R
grep("Rawlings",Sal$Name,value=TRUE)

[1] "Rawlings,Kellye A" "Rawlings,MarqWell D"
[3] "Rawlings,Paula M" "Rawlings-Blake,Stephanie C"

Sal[grep("Rawlings",Sal$Name),]

Name JobTitle AgencyID
13832 Rawlings,Kellye A EMERGENCY DISPATCHER A40302
13833 Rawlings,MarqWell D AIDE BLUE CHIP W02384
13834 Rawlings,Paula M COMMUNITY AIDE A04015
13835 Rawlings-Blake,Stephanie C MAYOR A01001

Agency HireDate AnnualSalary GrossPay
13832 M-R Info Technology 01/06/2003 $47980.00 $68426.73
13833 Youth Summer 06/15/2012 $11310.00 $507.50
13834 R&P-Recreation 12/10/2007 $19802.00 $8195.79
13835 Mayors Office 12/07/1995 $163365.00 $161219.24

‘Find’ functions: finding values, stringr and dplyr
str_subset(Sal$Name, "Rawlings")

[1] "Rawlings,Kellye A" "Rawlings,MarqWell D"
[3] "Rawlings,Paula M" "Rawlings-Blake,Stephanie C"

Sal %>% filter(str_detect(Name, "Rawlings"))

Name JobTitle AgencyID
1 Rawlings,Kellye A EMERGENCY DISPATCHER A40302
2 Rawlings,MarqWell D AIDE BLUE CHIP W02384
3 Rawlings,Paula M COMMUNITY AIDE A04015
4 Rawlings-Blake,Stephanie C MAYOR A01001

Agency HireDate AnnualSalary GrossPay
1 M-R Info Technology 01/06/2003 $47980.00 $68426.73
2 Youth Summer 06/15/2012 $11310.00 $507.50
3 R&P-Recreation 12/10/2007 $19802.00 $8195.79
4 Mayors Office 12/07/1995 $163365.00 $161219.24

Showing differnce in str_extract

str_extract extracts just the matched string

ss = str_extract(Sal$Name, "Rawling")
head(ss)

[1] NA NA NA NA NA NA

ss[!is.na(ss)]

[1] "Rawling" "Rawling" "Rawling" "Rawling"

Showing differnce in str_extract and str_extract_all

str_extract_all extracts all the matched strings

head(str_extract(Sal$AgencyID, "\\d"))

[1] "0" "0" "2" "6" "9" "4"

head(str_extract_all(Sal$AgencyID, "\\d"), 2)

[[1]]
[1] "0" "2" "2" "0" "0"

[[2]]
[1] "0" "3" "0" "3" "1"

Using Regular Expressions
I Look for any name that starts with:

I Payne at the beginning,
I Leonard and then an S
I Spence then capital C

head(grep("^Payne.*", x = Sal$Name, value = TRUE), 3)

[1] "Payne El,Jackie" "Payne Johnson,Nickole A"
[3] "Payne,Chanel"

head(grep("Leonard.?S", x = Sal$Name, value = TRUE))

[1] "Payne,Leonard S" "Szumlanski,Leonard S"

head(grep("Spence.*C.*", x = Sal$Name, value = TRUE))

[1] "Greene,Spencer C" "Spencer,Charles A" "Spencer,Christian O"
[4] "Spencer,Clarence W" "Spencer,Michael C"

Using Regular Expressions: stringr

head(str_subset(Sal$Name, "^Payne.*"), 3)

[1] "Payne El,Jackie" "Payne Johnson,Nickole A"
[3] "Payne,Chanel"

head(str_subset(Sal$Name, "Leonard.?S"))

[1] "Payne,Leonard S" "Szumlanski,Leonard S"

head(str_subset(Sal$Name, "Spence.*C.*"))

[1] "Greene,Spencer C" "Spencer,Charles A" "Spencer,Christian O"
[4] "Spencer,Clarence W" "Spencer,Michael C"

Replace
Let’s say we wanted to sort the data set by Annual Salary:

class(Sal$AnnualSalary)

[1] "character"

sort(c("1", "2", "10")) # not sort correctly (order simply ranks the data)

[1] "1" "10" "2"

order(c("1", "2", "10"))

[1] 1 3 2

Replace
So we must change the annual pay into a numeric:

head(Sal$AnnualSalary, 4)

[1] "$11310.00" "$53428.00" "$68300.00" "$62000.00"

head(as.numeric(Sal$AnnualSalary), 4)

Warning in head(as.numeric(Sal$AnnualSalary), 4): NAs introduced by
coercion

[1] NA NA NA NA

R didn’t like the $ so it thought turned them all to NA.

sub() and gsub() can do the replacing part in base R.

Replacing and subbing

Now we can replace the $ with nothing (used fixed=TRUE because
$ means ending):

Sal$AnnualSalary <- as.numeric(gsub(pattern = "$", replacement="",
Sal$AnnualSalary, fixed=TRUE))

Sal <- Sal[order(Sal$AnnualSalary, decreasing=TRUE),]
Sal[1:5, c("Name", "AnnualSalary", "JobTitle")]

Name AnnualSalary JobTitle
1222 Bernstein,Gregg L 238772 STATE'S ATTORNEY
3175 Charles,Ronnie E 200000 EXECUTIVE LEVEL III
985 Batts,Anthony W 193800 EXECUTIVE LEVEL III
1343 Black,Harry E 190000 EXECUTIVE LEVEL III
16352 Swift,Michael 187200 CONTRACT SERV SPEC II

Replacing and subbing: stringr

We can do the same thing (with 2 piping operations!) in dplyr

dplyr_sal = Sal
dplyr_sal = dplyr_sal %>% mutate(

AnnualSalary = AnnualSalary %>%
str_replace(

fixed("$"),
"") %>%

as.numeric) %>%
arrange(desc(AnnualSalary))

check_Sal = Sal
rownames(check_Sal) = NULL
all.equal(check_Sal, dplyr_sal)

[1] TRUE

	Dealing with Missing Data
	Tables and Tabulations
	Recoding Variables
	String functions
	Splitting Strings

