
Data Visualization

Andrew Jaffe

January 7, 2016

Basic Plots

We covered some basic plots previously, but we are going to expand
the ability to customize these basic graphics first.

Read in Data
death = read.csv("http://www.aejaffe.com/winterR_2016/data/indicatordeadkids35.csv",

as.is=TRUE,header=TRUE, row.names=1)
death[1:2, 1:5]

X1760 X1761 X1762 X1763 X1764
Afghanistan NA NA NA NA NA
Albania NA NA NA NA NA

We see that the column names were years, and R doesn’t necessarily
like to read in a column name that starts with a number and puts
an X there.
We’ll just take off that X and get the years.

library(stringr)
year = names(death) %>% str_replace("X","") %>% as.integer
head(year)

[1] 1760 1761 1762 1763 1764 1765

Basic Plots
> plot(as.numeric(death["Sweden",]) ~ year)

1750 1850 1950 2050

0.
0

1.
0

2.
0

3.
0

year

as
.n

um
er

ic
(d

ea
th

["
S

w
ed

en
",

])

Basic Plots
The y-axis label isn’t informative, and we can change the label of the
y-axis using ylab (xlab for x), and main for the main title/label.

> plot(as.numeric(death["Sweden",]) ~ year,
+ ylab = "# of deaths per family", main = "Sweden")

1750 1850 1950 2050

0.
0

1.
0

2.
0

3.
0

Sweden

year

of

 d
ea

th
s

pe
r

fa
m

ily

Basic Plots
Let’s drop any of the projections and keep it to year 2012, and
change the points to blue.

plot(as.numeric(death["Sweden",])~year,
ylab = "# of deaths per family", main = "Sweden",

xlim = c(1760,2012), pch = 19, cex=1.2,col="blue")

1750 1850 1950

0.
0

1.
0

2.
0

3.
0

Sweden

year

of

 d
ea

th
s

pe
r

fa
m

ily

Basic Plots
You can also use the subset argument in the plot() function, only
when using formula notation:

plot(as.numeric(death["Sweden",])~year,
ylab = "# of deaths per family", main = "Sweden",

subset = year < 2015, pch = 19, cex=1.2,col="blue")

1750 1850 1950

0.
0

1.
0

2.
0

3.
0

Sweden

year

of

 d
ea

th
s

pe
r

fa
m

ily

Basic Plots
Using scatter.smooth plots the points and runs a loess smoother
through the data.

> scatter.smooth(as.numeric(death["Sweden",])~year,span=0.2,
+ ylab="# of deaths per family", main = "Sweden",lwd=3,
+ subset = year < 2015, pch = 19, cex=0.9,col="grey")

1750 1850 1950 2050

0.
0

1.
0

2.
0

3.
0

Sweden

year

of

 d
ea

th
s

pe
r

fa
m

ily

Basic Plots
par(mfrow=c(1,2)) tells R that we want to set a parameter (par
function) named mfrow (number of plots - 1 row, 2 columns) so we
can have 2 plots side by side (Sweden and the UK)

> par(mfrow=c(1,2))
> scatter.smooth(as.numeric(death["Sweden",])~year,span=0.2,
+ ylab="# of deaths per family", main = "Sweden",lwd=3,
+ xlim = c(1760,2012), pch = 19, cex=0.9,col="grey")
> scatter.smooth(as.numeric(death["United Kingdom",])~year,span=0.2,
+ ylab="# of deaths per family", main = "United Kingdom",lwd=3,
+ xlim = c(1760,2012), pch = 19, cex=0.9,col="grey")

1750 1850 1950

0.
0

1.
0

2.
0

3.
0

Sweden

year

of

 d
ea

th
s

pe
r

fa
m

ily

1750 1850 1950

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

United Kingdom

year

of

 d
ea

th
s

pe
r

fa
m

ily

Basic Plots
We can set the y-axis to be the same.

par(mfrow=c(1,2))
yl = range(death[c("Sweden","United Kingdom"),])
scatter.smooth(as.numeric(death["Sweden",])~year,span=0.2,ylim=yl,

ylab="# of deaths per family", main = "Sweden",lwd=3,
xlim = c(1760,2012), pch = 19, cex=0.9,col="grey")

scatter.smooth(as.numeric(death["United Kingdom",])~year,span=0.2,
ylab="", main = "United Kingdom",lwd=3,ylim=yl,

xlim = c(1760,2012), pch = 19, cex=0.9,col="grey")

1750 1850 1950

0.
0

1.
0

2.
0

3.
0

Sweden

year

of

 d
ea

th
s

pe
r

fa
m

ily

1750 1850 1950

0.
0

1.
0

2.
0

3.
0

United Kingdom

year

Bar Plots
I Stacked Bar Charts are sometimes wanted to show distributions

of data

Stacked Bar Charts
cars = read.csv("http://biostat.jhsph.edu/~ajaffe/files/kaggleCarAuction.csv",as.is=T)
counts <- table(cars$IsBadBuy, cars$VehicleAge)
barplot(counts, main="Car Distribution by Age and Bad Buy Status",

xlab="Vehicle Age", col=c("darkblue","red"),
legend = rownames(counts))

0 2 4 6 8

1
0

Car Distribution by Age and Bad Buy Status

Vehicle Age

0
50

00
15

00
0

Bar Plots
prop.table allows you to convert a table to proportions (depends
on margin - either row percent or column percent)

Use percentages (column percentages)
barplot(prop.table(counts, 2), main="Car Distribution by Age and Bad Buy Status",

xlab="Vehicle Age", col=c("darkblue","red"),
legend = rownames(counts))

0 2 4 6 8

1
0

Car Distribution by Age and Bad Buy Status

Vehicle Age

0.
0

0.
4

0.
8

Bar Plots
Using the beside argument in barplot, you can get side-by-side
barplots.

Stacked Bar Plot with Colors and Legend
barplot(counts, main="Car Distribution by Age and Bad Buy Status",

xlab="Vehicle Age", col=c("darkblue","red"),
legend = rownames(counts), beside=TRUE)

0 2 4 6 8

0
1

Car Distribution by Age and Bad Buy Status

Vehicle Age

0
40

00
10

00
0

Graphics parameters

Set within most plots in the base ‘graphics’ package:

I pch = point shape,
http://voteview.com/symbols_pch.htm

I cex = size/scale
I xlab, ylab = labels for x and y axes
I main = plot title
I lwd = line density
I col = color
I cex.axis, cex.lab, cex.main = scaling/sizing for axes marks,

axes labels, and title

http://voteview.com/symbols_pch.htm

Devices

By default, R displays plots in a separate panel. From there, you
can export the plot to a variety of image file types, or copy it to the
clipboard.

However, sometimes its very nice to save many plots made at one
time to one pdf file, say, for flipping through. Or being more precise
with the plot size in the saved file.

R has 5 additional graphics devices: bmp(), jpeg(), png(), tiff(), and
pdf()

Devices

The syntax is very similar for all of them:

pdf("filename.pdf", width=8, height=8) # inches
plot() # plot 1
plot() # plot 2
etc
dev.off()

Basically, you are creating a pdf file, and telling R to write any
subsequent plots to that file. Once you are done, you turn the
device off. Note that failing to turn the device off will create a pdf
file that is corrupt, that you cannot open.

Boxplots, revisited
These are one of my favorite plots. They are way more informative
than the barchart + antenna. . .

> boxplot(weight ~ Diet, data=ChickWeight, outline=FALSE)
> points(ChickWeight$weight ~ jitter(as.numeric(ChickWeight$Diet),0.5))

1 2 3 4

50
15

0
25

0
35

0

Formulas

Formulas have the format of y ~ x and functions taking formulas
have a data argument where you pass the data.frame. You don’t
need to use $ or referencing when using formulas:

boxplot(weight ~ Diet, data=ChickWeight, outline=FALSE)

Colors
R relies on color ‘palettes’.

palette("default")
plot(1:8, 1:8, type="n")
text(1:8, 1:8, lab = palette(), col = 1:8)

1 2 3 4 5 6 7 8

1
3

5
7

1:8

1:
8

black
red

green3
blue

cyan
magenta

yellow
gray

Colors
The default color palette is pretty bad, so you can try to make your
own.

palette(c("darkred","orange","blue"))
plot(1:3,1:3,col=1:3,pch =19,cex=2)

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

1:3

1:
3

Colors

It’s actually pretty hard to make a good color palette. Luckily, smart
and artistic people have spent a lot more time thinking about this.
The result is the ‘RColorBrewer’ package

RColorBrewer::display.brewer.all() will show you all of the palettes
available. You can even print it out and keep it next to your monitor
for reference.

The help file for brewer.pal() gives you an idea how to use the
package.

You can also get a “sneak peek” of these palettes at:
www.colorbrewer2.com . You would provide the number of levels or
classes of your data, and then the type of data: sequential,
diverging, or qualitative. The names of the RColorBrewer palettes
are the string after ‘pick a color scheme:’

Colors
palette("default")
plot(weight ~ Time, data= ChickWeight, pch = 19, col = Diet)

0 5 10 15 20

50
15

0
25

0
35

0

Time

w
ei

gh
t

Colors
library(RColorBrewer)
palette(brewer.pal(5,"Dark2"))
plot(weight ~ Time, data=ChickWeight, pch = 19, col = Diet)

0 5 10 15 20

50
15

0
25

0
35

0

Time

w
ei

gh
t

Colors
library(RColorBrewer)
palette(brewer.pal(5,"Dark2"))
plot(weight ~ jitter(Time,amount=0.2),data=ChickWeight,

pch = 19, col = Diet,xlab="Time")

0 5 10 15 20

50
15

0
25

0
35

0

Time

w
ei

gh
t

Adding legends

The legend() command adds a legend to your plot. There are tons
of arguments to pass it.

x, y=NULL: this just means you can give (x,y) coordinates, or more
commonly just give x, as a character string:
“top”,“bottom”,“topleft”,“bottomleft”,“topright”,“bottomright”.

legend: unique character vector, the levels of a factor

pch, lwd: if you want points in the legend, give a pch value. if you
want lines, give a lwd value.

col: give the color for each legend level

Adding legends
palette(brewer.pal(5,"Dark2"))
plot(weight ~ jitter(Time,amount=0.2),data=ChickWeight,

pch = 19, col = Diet,xlab="Time")
legend("topleft", paste("Diet",levels(ChickWeight$Diet)),

col = 1:length(levels(ChickWeight$Diet)),
lwd = 3, ncol = 2)

0 5 10 15 20

50
15

0
25

0
35

0

Time

w
ei

gh
t

Diet 1
Diet 2

Diet 3
Diet 4

Coloring by variable
> circ = read.csv("http://www.aejaffe.com/winterR_2016/data/Charm_City_Circulator_Ridership.csv",
+ header=TRUE,as.is=TRUE)
> palette(brewer.pal(7,"Dark2"))
> dd = factor(circ$day)
> plot(orangeAverage ~ greenAverage, data=circ,
+ pch=19, col = as.numeric(dd))
> legend("bottomright", levels(dd), col=1:length(dd), pch = 19)

0 1000 3000 5000

0
20

00
50

00

greenAverage

or
an

ge
A

ve
ra

ge

Friday
Monday
Saturday
Sunday
Thursday
Tuesday
Wednesday

Coloring by variable
> dd = factor(circ$day, levels=c("Monday","Tuesday","Wednesday",
+ "Thursday","Friday","Saturday","Sunday"))
> plot(orangeAverage ~ greenAverage, data=circ,
+ pch=19, col = as.numeric(dd))
> legend("bottomright", levels(dd), col=1:length(dd), pch = 19)

0 1000 3000 5000

0
20

00
50

00

greenAverage

or
an

ge
A

ve
ra

ge

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

ggplot2
ggplot2 is a package of plotting that is very popular and powerful.
qplot is a short hand for “quick plot”. We can simply do a boxplot:

> library(ggplot2)
> qplot(factor(Diet), y = weight,
+ data = ChickWeight, geom = "boxplot")

100

200

300

1 2 3 4
factor(Diet)

w
ei

gh
t

ggplot2
The generic plotting function is ggplot:

> g = ggplot(aes(x = Diet, y = weight), data = ChickWeight)
> g + geom_boxplot()

100

200

300

1 2 3 4
Diet

w
ei

gh
t

Boxplots revisited again
We can do the same plot, by just saying we want a boxplot and
points (and jitter the points)

> qplot(factor(Diet), y = weight, data = ChickWeight,
+ geom = c("boxplot", "jitter"))

100

200

300

1 2 3 4
factor(Diet)

w
ei

gh
t

ggplot2: Adding 2 geoms together
To have multiple geometrics, just “add” them

> g + geom_boxplot() + geom_point(position = "jitter")

100

200

300

1 2 3 4
Diet

w
ei

gh
t

ggplot2: Adding 2 geoms together
To have multiple geometrics, just “add” them

g + geom_boxplot() + geom_jitter()

100

200

300

1 2 3 4
Diet

w
ei

gh
t

Histograms again
We can do histograms again using hist. Let’s do histograms of
weight at all time points for the chick’s weights. We reiterate how
useful these are to show your data.

> hist(ChickWeight$weight, breaks = 20)

Histogram of ChickWeight$weight

ChickWeight$weight

F
re

qu
en

cy

50 150 250 350

0
40

80

Multiple Histograms
> qplot(x = weight,
+ fill = factor(Diet),
+ data = ChickWeight,
+ geom = c("histogram"))

0

20

40

60

100 200 300 400
weight

co
un

t

factor(Diet)

1

2

3

4

Multiple Histograms
Alpha refers tot he opacity of the color, less is

> qplot(x = weight, fill = Diet, data = ChickWeight,
+ geom = c("histogram"), alpha=I(.7))

0

20

40

60

100 200 300 400
weight

co
un

t

Diet

1

2

3

4

Multiple Densities
We cold also do densities

> qplot(x= weight, fill = Diet, data = ChickWeight,
+ geom = c("density"), alpha=I(.7))

0.0000

0.0025

0.0050

0.0075

100 200 300
weight

de
ns

ity

Diet

1

2

3

4

Multiple Densities
> qplot(x= weight, colour = Diet, data = ChickWeight,
+ geom = c("density"), alpha=I(.7))

0.0000

0.0025

0.0050

0.0075

100 200 300
weight

de
ns

ity

Diet

1

2

3

4

Multiple Densities
> ggplot(aes(x= weight, colour = Diet),
+ data = ChickWeight) + geom_density(alpha=I(.7))

0.0000

0.0025

0.0050

0.0075

100 200 300
weight

de
ns

ity

Diet

1

2

3

4

Multiple Densities
You can take off the lines of the bottom like this

> ggplot(aes(x = weight, colour = Diet), data = ChickWeight) +
+ geom_line(stat = "density")

0.0000

0.0025

0.0050

0.0075

100 200 300
weight

de
ns

ity

Diet

1

2

3

4

Spaghetti plot
We can make a spaghetti plot by telling ggplot we want a “line”,
and each line is colored by Chick.

> qplot(x=Time, y=weight, colour = Chick,
+ data = ChickWeight, geom = "line")

100

200

300

0 5 10 15 20
Time

w
ei

gh
t

16

15

13

9

20

10

8

17

19

4

6

11

3

1

12

14

7

24

30

22

23

27

28

26

25

29

21

33

37

36

38

32

40

34

35

44

45

43

41

47

49

46

50

42

48

Spaghetti plot: Facets
In ggplot2, if you want separate plots for something, these are
referred to as facets.

> qplot(x = Time, y = weight, colour = Chick,
+ facets = ~Diet, data = ChickWeight, geom = "line")

1 2

3 4

100

200

300

100

200

300

0 5 101520 0 5 101520
Time

w
ei

gh
t

16

15

13

9

20

10

8

17

19

4

6

11

3

1

12

14

7

24

30

22

23

27

28

26

25

29

21

33

37

36

38

32

40

34

35

44

45

43

41

47

49

46

50

42

48

Spaghetti plot: Facets
We can turn off the legend (referred to a “guide” in ggplot2). (Note
- there is different syntax with the +)

> qplot(x=Time, y=weight, colour = Chick,
+ facets = ~ Diet, data = ChickWeight,
+ geom = "line") + guides(colour=FALSE)

1 2

3 4

100

200

300

100

200

300

0 5 10 15 20 0 5 10 15 20
Time

w
ei

gh
t

Spaghetti plot: Facets
> ggplot(aes(x = Time, y = weight, colour = Chick),
+ data = ChickWeight) + geom_line() +
+ facet_wrap(facets = ~Diet) + guides(colour = FALSE)

1 2

3 4

100

200

300

100

200

300

0 5 10 15 20 0 5 10 15 20
Time

w
ei

gh
t

ggplot2

Let’s try this out on the childhood mortality data used above.
However, let’s do some manipulation first, by using gather on the
data to convert to long.

library(tidyr)
long = death
long$state = rownames(long)
long = long %>% gather(year, deaths, -state)
head(long, 2)

state year deaths
1 Afghanistan X1760 NA
2 Albania X1760 NA

ggplot2

Let’s also make the year numeric, as we did above in the
stand-alone year variable.

library(stringr)
library(dplyr)
long$year = long$year %>% str_replace("^X", "") %>% as.numeric
long = long %>% filter(!is.na(deaths))

ggplot2
> qplot(x = year, y = deaths, colour = state,
+ data = long, geom = "line") + guides(colour = FALSE)

0

2

4

1800 1900 2000 2100
year

de
at

hs

ggplot2
Let’s try to make it different like base R, a bit. We use tile for the
geometric unit:

qplot(x = year, y = state, colour = deaths,
data = long, geom = "tile") + guides(colour = FALSE)

AfghanistanAlbaniaAlgeriaAngolaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBhutanBoliviaBosnia and HerzegovinaBotswanaBrazilBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCentral African Rep.ChadChannel IslandsChileChinaColombiaComorosCongo, Dem. Rep.Congo, Rep.Costa RicaCote d'IvoireCroatiaCubaCyprusCzech Rep.DenmarkDjiboutiDominican Rep.EcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFijiFinlandFranceFrench GuianaFrench PolynesiaGabonGambiaGeorgiaGermanyGhanaGreeceGrenadaGuadeloupeGuamGuatemalaGuineaGuinea−BissauGuyanaHaitiHondurasHong Kong, ChinaHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKorea, Dem. Rep.Korea, Rep.KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLithuaniaLuxembourgMacao, ChinaMacedonia, FYRMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Fed. Sts.MoldovaMongoliaMontenegroMoroccoMozambiqueMyanmarNamibiaNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNorwayOmanPakistanPanamaPapua New GuineaParaguayPeruPhilippinesPolandPortugalPuerto RicoQatarReunionRomaniaRussiaRwandaSaint LuciaSaint Vincent and the GrenadinesSamoaSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSierra LeoneSingaporeSlovak RepublicSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSudanSurinameSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTimor−LesteTogoTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuelaVietnamVirgin Islands (U.S.)West Bank and GazaWestern SaharaYemen, Rep.ZambiaZimbabwe

1800 1900 2000 2100
year

st
at

e

ggplot2

Useful links:

I http://docs.ggplot2.org/0.9.3/index.html
I http://www.cookbook-r.com/Graphs/

http://docs.ggplot2.org/0.9.3/index.html
http://www.cookbook-r.com/Graphs/

